24-3-2.

The shortest distance from A -> D is 2, via A -> C -> B -> D. Dijkstra’s algorithm gives a shortest distance of 4 (A -> B -> D).

24-3. a.) \(R[i_1, i_2] \cdot R[i_2, i_3] \cdots R[i_{k-1}, i_1] > 1 \),

\((1/R[i_1, i_2]) \cdot (1/R[i_2, i_3]) \cdots (1/R[i_{k-1}, i_1]) < 1 \) on taking reciprocal

\(\log (1/R[i_1, i_2]) \cdot \log (1/R[i_2, i_3]) \cdots \log (1/R[i_{k-1}, i_1]) < 0 \) on taking log

Now, create a directed graph with \(n \) vertices, each of which represents each currency. Each vertex then has \(n - 1 \) outgoing edges to other \(n - 1 \) vertices with the weight \(\log (1/R[i, j]) \). Add one additional vertex as a source with \(n \) outgoing edges to \(n \) vertices, respectively, with the weight 0. Then, the original problem is converted to the problem of finding a negative-weight cycle in a graph. Using Bellman-Ford algorithm we can detect such a negative-weight cycle can do it.

Since \(O(V) = O(n) \) and \(O(E) = O(n^2) \), the total running time is \(O(n^3) \).

b.) First, run the Bellman-Ford algorithm as described above. Then, if it says there is a negative-weight cycle, just relax all the edges once more. It will be seen that the \(d \) values of some vertices change. The sequence found by this approach can be printed by using the \(\pi \) values. The total running time is \(O(n^3) \).