Understanding Error Correction Mandates for Flash Memory

Charles Camp
IBM Flash Systems Development

Special thanks to Tom Parnell (IBM Research - Zurich); Gary Tressler and Tom Griffin (IBM Technology Development)
Agenda

- Why are We Here?
- Error Correction Fundamentals
 - A Simple Channel/Storage Model
 - Extension to the Real World
 - RBER, UBER, and the Magic of Correction
 - Tradeoffs and Numerical Examples
- The Quest for Deeper Knowledge
 - Characterization
 - Analysis
- Questions?... Comments?
Why are We Here?

- Error Correction Fundamentals
 - A Simple Channel/Storage Model
 - Extension to the Real World
 - RBER, UBER, and the Magic of Correction
 - Tradeoffs and Numerical Examples

- The Quest for Deeper Knowledge
 - Characterization
 - Analysis

- Questions?... Comments?
Why are We Here?

- Flash memory is a lossy storage medium.
- Device manufacturers issue error correction mandates that must be met in order to guarantee data sheet specifications, e.g. write endurance.
- In some cases, a manufacturer will recommend a particular error correction scheme or algorithm.
- What if we can live with relaxed specifications? Can we get away with less error correction?
- What if we need performance beyond the data sheet specifications? Can we improve performance with increased error correction?
- How do we know how well our codes perform?
Error Correction Fundamentals

- Why are We Here?

- Error Correction Fundamentals
 - A Simple Channel/Storage Model
 - Extension to the Real World
 - RBER, UBER, and the Magic of Correction
 - Tradeoffs and Numerical Examples

- The Quest for Deeper Knowledge
 - Characterization
 - Analysis

- Questions?... Comments?
A Simple Channel/Storage Model

- Example: binary symmetric channel with equal error probability for transmission (storage) of either 0 or 1.

- While highly simplistic, the BSC serves as a reasonable first-order approximation of Flash.

- In this example $P_e = 0.01$, $Pr(\text{success}) = 1 - P_e = 0.99$.

- The probability of error for any single bit transmitted across the channel is the raw bit error rate, or RBER. In this example, $RBER = 0.01$.

\[
\begin{array}{c|c|c|c}
\text{TX'd} & \text{CHANNEL (STORAGE)} & \text{RX'd} \\
\hline
1 & 99\% & 1 \\
0 & 1\% & 0 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{TX'd} & \text{CHANNEL (STORAGE)} & \text{RX'd} \\
\hline
1 & 99\% & 1 \\
0 & 1\% & 0 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{TX'd} & \text{CHANNEL (STORAGE)} & \text{RX'd} \\
\hline
1 & 99\% & 1 \\
0 & 1\% & 0 \\
\end{array}
\]
A Simple Channel/Storage Model

- Given n transmitted (or stored) bits, instead of simply one bit, what is the probability of having exactly k errors within those n bits?

\[
Pr(k) = \binom{n}{k} \times P_e^k \times (1 - P_e)^{n-k} = \frac{n!}{k!(n-k)!} P_e^k \times (1 - P_e)^{n-k}
\]
A Simple Channel/Storage Model

- Consider three stored bits (n = 3), using an RBER of 0.01 from the previous example…

 \[
 \begin{align*}
 \text{Pr (exactly 0 errors)} &= \frac{3!}{0! \times 3!} \times 0.01^0 \times 0.99^3 = 0.970299 \\
 \text{Pr (exactly 1 error)} &= \frac{3!}{1! \times 2!} \times 0.01^1 \times 0.99^2 = 0.029403 \\
 \text{Pr (exactly 2 errors)} &= \frac{3!}{2! \times 1!} \times 0.01^2 \times 0.99^1 = 0.000297 \\
 \text{Pr (exactly 3 errors)} &= \frac{3!}{3! \times 0!} \times 0.01^3 \times 0.99^0 = 0.000001
 \end{align*}
 \]

- Probability of having \(x \) or less errors is the sum of the individual probabilities for \(k \leq x \)…

 \[
 \text{Pr (1 or less errors)} = 0.029403 + 0.970299 + = 0.999702
 \]
A Simple Channel/Storage Model

Example: BSC with simple 3x majority logic encoding. Single data bits are sent as 3-bit code words. A single-bit error within any code word is guaranteed to be “fixed”.

Raw bit error rate through the channel (RBER) remains 0.01. Code rate = 0.333 (impractical for most storage applications). Post-decoding error rate, however, drops to 0.000298 – an improvement of more than 33x!
Extension to the Real World

• Previous example is interesting, but not practical. Very short code words are inefficient, majority logic particularly so.

• Recent error correction schemes for Flash memory have relied heavily upon BCH codes.

• BCH codes are algebraic codes. Algebraic codes provide deterministic performance - they guarantee that a particular number of errors within a single code word can always be corrected.

• Flash device manufacturers typically mandate that users correct \(X \) errors within \(Y \) bits. BCH codes are a good fit for this task, since they can be designed to meet the manufacturer’s requirement deterministically – no guessing!

• To really understand the performance of these codes, however, we first need to extend the mathematics we just covered.

• Nothing we need, however, is outside the scope of a good freshman-level or sophomore-level course in probability.
Extension to the Real World

- Given a channel (or storage medium) of the type we discussed earlier, and an RBER for the channel, the error count within a group of n bits is a random variable.

- The distribution of error counts can be seen in the random variable’s probability mass function (pmf) and cumulative distribution function (cdf).
Consider a collection (codeword) of 8192 bits, written to and then retrieved from a memory storage device, with RBER = 3.0e-3.

The pmf illustrates the probability of occurrence for each possible error count within a code word.
• The cumulative distribution function (cdf) is the summation (integral) of the probability mass function.

• Given a specific number of errors, the cdf illustrates the probability of having less than or equal to that number of errors within a code word.
Assume that we can correct 40 errors within a code word. Probability of not successfully correcting = Pr (> 40 errors) = 1 - Pr (≤ 40 errors) ≈ 0.0015. This is called the frame error rate, or FER.

Correcting 41 errors drops frame error rate to ≈ 1 − 0.99916 = 0.00084. A 2.5% increase in correction strength yields a 44% reduction in frame error rate!
• To understand the error characteristics of corrected code words, we need to understand how error correction changes the previous distribution.

• Assume that we can correct exactly t errors in each code word.

• After correction, there will be NO code words with error counts ranging from 1 through t. Corrected code words will have either 0 errors or > t errors.

• In the corrected code word, Pr (0 errors) = the probability of having from 1 through t errors in the original code word.

• The distribution of error counts in the corrected code word is heavily biased towards 0 errors.
RBER, UBER, and the Magic of Correction

- Assume that we can correct 40 errors in each codeword.
- Error correction modifies the original distribution by “piling up” pre-correction error counts from 0 through 40 into the post-correction “0-error” bin.
- Error counts greater than 40 occur with exactly the same probability as before. Average error count, however, is dramatically reduced.
• Looking closely at the pmf of corrected code word errors illustrates the fact that error count probabilities have “piled up” at 0.

• How do we use this distribution to calculate the bit error rate for corrected data?
• Post-correction bit error rate is called UBER, short for uncorrected bit error rate. UBER is the industry-standard metric for evaluating error correction performance in Flash memory.

• If we know the distribution of possible errors within a code word, i.e. the pmf, then calculating the uncorrected bit error rate is very straightforward.

\[
UBER = \frac{\sum_{k=0}^{l} k \times Pr(k)}{l} = \frac{\sum_{k=t+1}^{l} k \times Pr(k)}{l}
\]

• Note that the summation can start at t+1, since all other summation terms below t+1 are 0 for an error correction scheme with strength t.
Correction strength has a significant impact on UBER. As correction strength varies from 37 to 43, at an RBER of 2.00×10^{-3}, UBER decreases by a factor of more than 250.

<table>
<thead>
<tr>
<th>Code Length</th>
<th>RBER</th>
<th>Strength (t)</th>
<th>Code Rate</th>
<th>UBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>8192</td>
<td>2.00e-3</td>
<td>37</td>
<td>0.937</td>
<td>1.612e-08</td>
</tr>
<tr>
<td>8192</td>
<td>2.00e-3</td>
<td>38</td>
<td>0.935</td>
<td>6.808e-09</td>
</tr>
<tr>
<td>8192</td>
<td>2.00e-3</td>
<td>39</td>
<td>0.933</td>
<td>2.805e-09</td>
</tr>
<tr>
<td>8192</td>
<td>2.00e-3</td>
<td>40</td>
<td>0.932</td>
<td>1.128e-09</td>
</tr>
<tr>
<td>8192</td>
<td>2.00e-3</td>
<td>41</td>
<td>0.930</td>
<td>4.426e-10</td>
</tr>
<tr>
<td>8192</td>
<td>2.00e-3</td>
<td>42</td>
<td>0.928</td>
<td>1.697e-10</td>
</tr>
<tr>
<td>8192</td>
<td>2.00e-3</td>
<td>43</td>
<td>0.927</td>
<td>6.362e-11</td>
</tr>
</tbody>
</table>
RBER also has a significant impact on UBER. As correction strength varies from 37 to 43, at an RBER of 1.25e-3, UBER decreases by a factor of more than 4000!

<table>
<thead>
<tr>
<th>Code Length</th>
<th>RBER</th>
<th>Strength (t)</th>
<th>Code Rate</th>
<th>UBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>8192</td>
<td>1.25e-3</td>
<td>37</td>
<td>0.937</td>
<td>1.016e-13</td>
</tr>
<tr>
<td>8192</td>
<td>1.25e-3</td>
<td>38</td>
<td>0.935</td>
<td>2.705e-14</td>
</tr>
<tr>
<td>8192</td>
<td>1.25e-3</td>
<td>39</td>
<td>0.933</td>
<td>7.012e-15</td>
</tr>
<tr>
<td>8192</td>
<td>1.25e-3</td>
<td>40</td>
<td>0.932</td>
<td>1.775e-15</td>
</tr>
<tr>
<td>8192</td>
<td>1.25e-3</td>
<td>41</td>
<td>0.930</td>
<td>4.383e-16</td>
</tr>
<tr>
<td>8192</td>
<td>1.25e-3</td>
<td>42</td>
<td>0.928</td>
<td>1.057e-16</td>
</tr>
<tr>
<td>8192</td>
<td>1.25e-3</td>
<td>43</td>
<td>0.927</td>
<td>2.489e-17</td>
</tr>
</tbody>
</table>
If we fix correction strength at 40, and vary RBER from 2.75e-3 to 1.25e-3, UBER decreases by a factor of more than 840,000,000!

<table>
<thead>
<tr>
<th>Code Length</th>
<th>RBER</th>
<th>Strength (t)</th>
<th>Code Rate</th>
<th>UBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>8192</td>
<td>2.75e-3</td>
<td>40</td>
<td>0.932</td>
<td>1.503e-06</td>
</tr>
<tr>
<td>8192</td>
<td>2.50e-3</td>
<td>40</td>
<td>0.932</td>
<td>2.116e-07</td>
</tr>
<tr>
<td>8192</td>
<td>2.25e-3</td>
<td>40</td>
<td>0.932</td>
<td>1.987e-08</td>
</tr>
<tr>
<td>8192</td>
<td>2.00e-3</td>
<td>40</td>
<td>0.932</td>
<td>1.128e-09</td>
</tr>
<tr>
<td>8192</td>
<td>1.75e-3</td>
<td>40</td>
<td>0.932</td>
<td>3.373e-11</td>
</tr>
<tr>
<td>8192</td>
<td>1.50e-3</td>
<td>40</td>
<td>0.932</td>
<td>4.350e-13</td>
</tr>
<tr>
<td>8192</td>
<td>1.25e-3</td>
<td>40</td>
<td>0.932</td>
<td>1.775e-15</td>
</tr>
</tbody>
</table>
Tradeoffs and Numerical Examples

• So far, we have focused on evaluation of a correction scheme using a fixed code word size.

• What if wish to change the length of the code word?

• Shorter code words are generally less efficient, but require less processing resources and deliver lower read latency in an absolute sense.

• Longer code words are generally more efficient, but require more processing resources and deliver higher latency in an absolute sense.

• The key is to choose a correction strength that delivers the same or lower UBER.
Correction strength for a shorter or longer codeword must be chosen to meet required UBER. Given a fixed correction strength of 40 over 8192 bits, what strength is required over 4K or 16K to achieve the same UBER?

<table>
<thead>
<tr>
<th>RBER</th>
<th>length = 8192</th>
<th>strength:UBER</th>
<th>length = 4096</th>
<th>strength:UBER</th>
<th>length = 16384</th>
<th>strength:UBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25e-3</td>
<td>40 : 1.775e-15</td>
<td>29 : 3.503e-16</td>
<td>60 : 1.308e-15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.75e-3</td>
<td>40 : 3.373e-11</td>
<td>27 : 1.964e-11</td>
<td>64 : 1.571e-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00e-3</td>
<td>40 : 1.128e-09</td>
<td>26 : 1.052e-09</td>
<td>65 : 8.621e-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.25e-3</td>
<td>40 : 1.987e-08</td>
<td>26 : 9.624e-09</td>
<td>67 : 1.151e-08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50e-3</td>
<td>40 : 2.116e-07</td>
<td>25 : 1.645e-07</td>
<td>68 : 1.676e-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.75e-3</td>
<td>40 : 1.503e-06</td>
<td>25 : 7.519e-07</td>
<td>69 : 1.480e-06</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tradeoffs and Numerical Examples

• Understanding the performance of a particular codeword length and correction strength requires us to calculate UBER. This requires knowledge of RBER.

• Unfortunately, Flash device manufacturers do not generally specify RBER!

• More importantly, RBER varies with Flash wear, temperature, and a variety of other factors that are often difficult to control, let alone predict.

• For these reasons, as well as others, it is far easier to simply do what the manufacturer recommends.

• Unfortunately, this is not going to satisfy enterprise customers, who demand to know the performance and expected lifetimes of their storage systems.

• It is also not going to work in a competitive industry characterized by “pushing the envelope”.

• We simply need to know more… We need to dig deeper!
The Quest for Deeper Knowledge

• Why are We Here?

• Error Correction Fundamentals
 • A Simple Channel/Storage Model
 • Extension to the Real World
 • RBER, UBER, and the Magic of Correction
 • Tradeoffs and Numerical Examples

• The Quest for Deeper Knowledge
 • Characterization
 • Analysis

• Questions?... Comments?
As one might expect, as Flash cells are used (e.g. programmed and erased) their reliability worsens and the probability of reading a bit incorrectly (RBER) increases.

- Extreme P/E cycle conditions lead to an RBER that exceed 1e-2.
- If we really want to “push the envelope” then we must be prepared to deal with reading 1 in every 100 bits incorrectly!
Characterization / Analysis

- RBER is not completely determined by P/E cycles

- It has been established in the literature that RBER can vary across blocks (two blocks subjected to the same number of P/E cycles may have completely different RBER)

- RBER can even vary within a block (from page to page) as shown below:
• How can we achieve operational UBER < 1e-15 given RBER = 1e-2 using BCH codes?

• For a code length of 8192 bits we would need correction strength t=157. This corresponds to a code rate of 0.73 which is very low for storage applications.

• To become more efficient we can try increasing the BCH code length:
 • Higher code rate is achieved (0.73 \rightarrow 0.78)
 • BUT: the implementation complexity does not scale well (t=1585 ?!)

• A different approach is required

<table>
<thead>
<tr>
<th>Code length</th>
<th>RBER</th>
<th>Strength (t)</th>
<th>Code Rate</th>
<th>UBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>8192</td>
<td>0.01</td>
<td>157</td>
<td>0.732</td>
<td>8.210e-16</td>
</tr>
<tr>
<td>16384</td>
<td>0.01</td>
<td>267</td>
<td>0.756</td>
<td>6.627e-16</td>
</tr>
<tr>
<td>32768</td>
<td>0.01</td>
<td>469</td>
<td>0.771</td>
<td>9.614e-16</td>
</tr>
<tr>
<td>65536</td>
<td>0.01</td>
<td>852</td>
<td>0.779</td>
<td>8.691e-16</td>
</tr>
<tr>
<td>131072</td>
<td>0.01</td>
<td>1585</td>
<td>0.782</td>
<td>8.955e-16</td>
</tr>
</tbody>
</table>
Questions / Comments

- Why are We Here?
- Error Correction Fundamentals
 - A Simple Channel/Storage Model
 - Extension to the Real World
 - RBER, UBER, and the Magic of Correction
 - Tradeoffs and Numerical Examples
- The Quest for Deeper Knowledge
 - Characterization
 - Analysis
- Questions?... Comments?