Floating Codes for Joint Information Storage in
Write Asymmetric Memories

Anxiao (Andrew) Jiang Vasken Bohossian Jehoshua Bruck
Computer Science Department Electrical Engineering Department Electrical Engineering Department
Texas A&M University California Institute of Technology California Institute of Technology
College Station, TX 77843-3112 Pasadena, CA 91125 Pasadena, CA 91125
ajiang@cs.tamu.edu vincent@paradise.caltech.edu bruck@paradise.caltech.edu

Abstract—Memories whose storage cells transit irreversibly the threshold voltage. Programming and reading cells are fast;
between states have been common since the start of the datahgwever, rewriting data is much more complex. Most of the
storage technology. In recent years, flash memories and other time, it requires moving cells to lower states for rewriting

non-volatile EEPROM'’s based on floating-gate cells have becomed t hich ¢ lect f th lIs. In flash
a very important family of such memories. We model them by ata, which means to remove electrons irom the cells. In tlas

the Write Asymmetric Memory (WAM), a memory where each memories, cells are Organized into blocks. A typlcal block
cell is in one of ¢ states — state 0, 1;--, ¢ — 1 — and can only using binary cells stores 64, 128 or 256 kilobytes of data. Due

transit from a lower state to a higher state. Data stored ina WAM to circuit complexity reasons, to rewrite, first the whole block
can be rewritten by shifting the cells to higher states. Since the has to be erased (which means to lower all the cells of the

state transition is irreversible, the number of times of rewriting .
is limited. When multiple variables are stored in a WAM, we block to the 0-state), then all the cells are reprogrammed. This

study codes, which we calfloating codesthat maximize the total happens even if only one cell really needs to lower its state for
number of times the variables can be written and rewritten. the rewriting, and it leads to a writing speed aba0t times

In this paper, we present several families of floating codes slower than reading. Therefore, it will be very beneficial to
that are either optimal or asymptotically optimal. We also gagign codes for storing data such that the data can be rewritten

present bounds to the performance of general floating codes. The . .
results show that floating codes can integrate a WAM’s rewriting many times before the block has to be erased. Reducing the

capabilities for different variables to a surprisingly high degree. number of block erasing operations is critical not only for
improving rewriting speed, but also for the flash memory’s

l. INTRODUCTION lifetime. Every erasing reduces the quality of the cells, and
Memories whose storage cells transit irreversibly betweenrrently, a flash memory’s lifetime is bounded by aboit
states have been common since the beginning of the dptagram-erase cycles. Although technically speaking, a cell
storage technology. Examples include punch cards and digitah return to a lower state through block erasing, in this paper,
optical discs, where a cell can change from a O-state towa are interested in the writing and rewriting of data between
1-state but notvice versa In recent years, flash memoriedwo block erasing operations. In that period, the cells can only
and some other non-volatile EEPROM'’s based on floating-gage from lower states to higher states.
cells have become a very important family of such memories.We model the memories mentioned above using the fol-
They have good properties including high data density, fdstving Write Asymmetric Memory (WAM) model. A WAM
reading time, physical robustness, etc., and have been widebnsists of n cells, where each cell hag states: state
used in mobile, mass as well as standard storage devices.0,1,---,¢ — 1. Such a cell is called g-ary cell. A cell can
We use flash memories as a typical example to explajo from statei to statej if and only if ¢ < j.

the basic storage mechanisms based on floating-gate celldVAM is a straightforward generalization of the Write
A flash memory consists of floating-gate cells as its basi@nce Memory (WOM) model, firstly proposed by Rivest and
storage elements. In most products, a cell has two stat8samir [9], whereq = 2. WAM is also a special case of
but to increase data density, multi-level storage (where a ctile Generalized WOM model [3], where the state transition
has 4 to 256 or even more states) is being developed. Fodiagram of a cell can be any directed acyclic graph.
cell with ¢ states, we denote its states byl,---,q — 1. To Research has been done on (generalized) WOM codes,
write (program) a cell, the hot-electron injection mechanismhere a single variable is stored in a WOM, and the code
or the Fowler-Nordheim tunneling mechanism is used to injeehables the variable to be rewritten numerous times. In prac-
electrons into the cell, where the electrons become trappéde, a memory stores many — let’'s sy words. A simple
The number of trapped electrons in a cell determines thgproach to use the WOM codes in a memory is to partition
threshold voltage of the cell: the more electrons, the higher thiénto & parts, where each part stores a word independently.
threshold voltage. The number of trapped electrons is chosemhis simple approach, however, has a serious limitation. If
to concentrate aroung discrete levels, corresponding to thehe sequence of rewriting is very nonuniform across the words,
q cell states. The state of a cell can be read by measuriwgich is common in many applications, the WAM becomes

unusable very soon. For example, say that each storage [pajwrites between two erasing operations, useful for improv-
allowst times of rewriting of a word. Once one of tkhewords ing writing speed and prolonging the memory lifetime. The
needs rewriting for thét+1)-th time, the WAM can no longer use of error-correcting codes for improving data reliability in
meet the requirement, even if the other— 1 words have flash memories has been proposed in some works [1] [5].
not been rewritten yet. Therefore, it will be very beneficial

to integrate the rewriting capabilities of the words, so that!!!-
the words can be rewritten many times regardless of what thdn this section, we present a floating code for binary
rewriting sequence is. As we will show in this paper, suchariables. That is] = 2, so each variable has value 0 or 1. In
an integration is feasible, many times to a surprisingly highlash memories, the 16 bits of a word are usually stored at the
degree. We call the codes that achieve it Bheating Codes same position of 16 parallel blocks. Consequently, a rewriting

We formally define the problem we study as followss. operation on a word becomes the rewriting of a bit in a block.
variables are stored in a WAM, where each variable takes Therefore, it is important to study the caselof 2.
value from an alphabet of siZze {0,1, -,/ —1}. The WAM The code we present is fdr = 2,1 = 2 and arbitraryn
hasn ¢-ary cells. Initially, all the cells are in the O-state, and athnd q. The code maximizes, the number of rewrites, and is
the variables have the default value 0. Each rewriting updathsis optimal. We prove the code’s optimality by providing a
the value of one variable. We ugeq, vs,---,v;) — which general upper bound tofor floating codes, not limited to the
we call thevariable vector— to denote the values of the casek =2,1 = 2.
variables, where; € {0,1,---,1—1}. We use(cy,ca, -, ¢n))))

_ which we call thecell state vector- to denote the states ofA- Optimal Floating Code fok = 2,1 = 2 and Arbitraryn, ¢
the n cells, wherec; € {0,1,---,¢ — 1}. A cell state vector Three examples of the code are shown in Fig. 1, correspond-
(c1,c2,-++,c,) is said to beaboveanother cell state vectoring ton = 1,2 and 3, respectively. We comment that= 1, 2
(c),ch,---,c) if ¢, > ¢, for all i. When the cells change are, in fact, degenerated cases; it is only whea 3 or more
their states, they can only change to a state vector above tihat the code reveals the full structure of its construction.
current one. The numbers inside each circle are a cell state vector,

A floating codehas two functionsg : {0,1,---,¢g—1}" — while the bold numbers beside the circle are the corresponding
{0,1,---,1—1}*, and3: {0,1,---,¢g—1}" x {1,2,---,k} x variable vector. For example, in Fig. 1(a), the cell state vector
{0,1,---,1—1} — {0,1,---,¢ — 1}". Functiona maps each (c;) = (3) corresponds to the variable vector, v2) = (0,0);
cell state vector to a variable vector, which is used to decotte Fig. 1(c), the cell state vectofci,cq,c3) = (1,0,0)
(interpret) the stored data. Functighshows how to rewrite: corresponds to the variable vectér,,v2) = (1,0). The
given the current cell state vector and the information on whightrows leaving a cell state vector shows how the next rewriting
of the k variables is to be updated to which new value, thghould be performed when this cell state vector is the current
function 8 outputs the new cell state vector. The new cell statell state vector. For example, for the code in Fig. 1(c), if
vector should correspond to the new values of the variablethe current cell state vector {4, 0,0) and the new rewriting

A floating code allowing times of rewritingis a code that request is to change the first variable to ‘0’ (which means to
allows the variables to be rewritten at leastimes in total, change the variable vector frofi, 0) to (0,0)), then the cell
regardless of what the sequence of rewriting is. A fundamensthte vector will becomél,1,0). Similarly, if the sequence
objective of floating codes is to maximize of rewriting changes the variable vector @0) — (1,0) —

In the following, we first present a brief overview of the(l,1) — (0,1) — --- (note that every rewriting changes the
related work. Then, we present the constructions of sevevalue of just one variable), the cell state vector changes as
families of floating codes, which are either optimal or asymg9,0,0) — (1,0,0) — (1,0,1) — (1,0,2) — - --
totically optimal. We also present upper and lower bounds toWe define the cell state vectors of thi¢h generationto
t for general floating codes. The details are as follows. be the cell state vectors reachable aftdéimes of rewriting.

In Fig. 1, all the cell state vectors in the same generation are
placed at the same horizontal level. For example, in Fig. 1(c),

WOM codes were first studied by Rivest, Shamir] the cell state vectors in the 2nd generation(dré, 0), (1,0, 1)
al., where a single variable is stored in a WOM and needsd (0,1,1). The codes in Fig. 1 are all fof — oo, and
to be updated multiple times. Capacities of WOM have bediney all have periodic patterns; specifically, every code is a
studied [3] [4] [6] [7] [9] [10], and multiple classes of WOM repetition of the structure shown in the dotted box labelled by
codes have been invented. The majority of the known codes évee period.” To see how, notice that the first generation in
binary, and they include linear codes [2] [9], tabular codes [9he dotted box contains two cell state vectors corresponding to
codes constructed using Golay codes [2] or projective gevo different variable vectors, and so is true for the generation
ometries [8], etc. Besides WOM, constrained memories aleb cell state vectors directly following the dotted box; what's
include write efficient memory (WEM), write unidirectionalmore, the latter two cell state vectors can be obtained from the
memory (WUM) and write isolated memory (WIM) [7]. former two cell state vectors by raising every cell’s state by

There is no work we are aware of that addresses the wdFor example, in Fig. 1(b), the former two cell state vectors
of codes for flash memories for increasing the number afe (1,0) and (0,1); when we raise every cell's state by 2,

AN OPTIMAL CODE FORTWO BINARY VARIABLES

II. RELATED WORK

one
period

Fig. 1. Three examples of an optimal floating code ko= 2,1 = 2 and
arbitraryn,q. (@n =1. (b)) n = 2. () n = 3.

we get(3,2) and (2, 3), the latter two cell state vectors.) The
code is built for arbitrarily largey in the following way. A
“period” in the code containgn — 1 generations. The second

period directly follows — and has the same structure as — the

first period, except that: (i) every cell’'s state is raised by 2, (ii
the pair of variable vector§l, 0) and (0, 0) are switched, and
the pair of variable vector®), 1) and(1, 1) are also switched.
Fori=1,2,3,---, the (2i 4+ 1)-th (resp.,(2: + 2)-th) period
has the same structure as the 1st (resp. 2nd) period except
every cell's state is raised by.

If ¢ is finite, it is simple to get the corresponding code: just

truncate the above code to the maximum generation, subject

to the constraint that every cell’s state is at m@st 1.

We present the formal construction of the code in Fig. 2.
The construction is in fact quite regular and elegant.

It is straightforward to verify the correctness (validity) of
the code in Fig. 2. The key step is to verify that for every
cell state vector, its two outgoing arrows enter two cell state
vectors in the next generation that correspond to two different
and correct variable vecto(s1, v2). It is also straightforward
to verify the correctness of the following theorem.

Theorem 1:For the code constructed in Fig. 2= (n —
D(g—1)+ [5],

We see that the floating code integrates the WAM’s rewriting
capabilities for different variable to a very high degree. Let's
call >, ¢; the weightof the cell state vector. Clearly, every
rewriting needs to increase thakightby at least 1. If then
cells are evenly split to be used independently by khe 2
variables,t can never exceed - (¢ — 1). The floating code,
however, achieves= (n — 0.5)(¢ — 1).

hat

4.

Fori=1,2,---,n — 1, do:

The i-th generation of cell state vectors contains all the 1
elements that satisfy the following properties: among the fitst
the

cells, i of them are in state 1 and one of them is in state O;
lastn — (i + 1) cells are all in state 0.
In the i-th generation, if a cell state vector s

(1,1,---,1,0,0,---,0) (that is, the first: cells are in
state 0, and the last — ¢ cells are in state 0), then it correspongs
to the variable vector(vi,v2) = (1,0) (if ¢ is odd) or
(v1,v2) = (0,0) (if ¢ is even); otherwise, the cell state vectp
corresponds to the variable vectar;, v2) = (0,1) (if ¢ is odd)
or (vi,v2) = (1,1) (if ¢ is even).

Let a denote a cell state vector in tijeé — 1)-th generation. The|
two outgoing arrows ot are as follows: one arrow goes to th
cell state vector in thé-th generation where the firstcells are
in state 1 and the last — i cells are in state 0; the other arro!
goes to the cell state vector of tiieh generation that is the sam
asa except that itz 4+ 1)-th cell is in state 1 instead of state (.

Note that by the above construction, tfe — 1)-th generation
containsn cell state vectors, where each cell state vectorhasg
cells in the state 1 and one cell in the state 0. Let's denote t
n cell state vectors by, s2, -+, sn. Fors; (1 < < n), let’s
denote thev—1 cellsin state 1 b (; 1), br(s,2)s **» Or(i,n—1),
and denote the cell in state 0 By.(;). (1 < 7(4,5) < n.)
Fori=n,n+1,---,2n — 3, do:

The i-th generation of cell state vectors contain§ — n + 2)
elements, which we partition inta groups. Forj = 1,2,---,n,
the j-th group contains all the—n+2 = [i—(n—1)]+1 elements
that satisfy the following properties: among thie- (n — 1)] +1
cells b‘rr(j,l): bﬁ(j72>, sy, bﬂ.(j’l',(n,1>+1), i — (TL —].) of them
are in state 2 and one of them is in state 1; the— i — 3
cells by (ji—(n—1)+2)s Ox(jim(n—1)+3), "+ br(jn—1) are all

=

@

D =

in state 1; the celb,;) Is in state O.
In the i-th generation, f)or a cell state vector in theth group,
if the cellsb,(; 1), bx(j,2), "+ On(j,im(n—1)) are all in state 2,

then it corresponds to the variable vecter, v2) = (1,0) (if ¢
is odd) or(v1,v2) = (0,0) (if 7 is even); otherwise, the cell stat
vector corresponds to the variable vector, v2) = (0,1) (if 4
is odd) or(vi,v2) = (1,1) (if ¢ is even).

Let a denote a cell state vector in tfe — 1)-th generation and
in the j-th group. (Ifi — 1 = n — 1, then leta be s;.) The two
outgoing arrows ofz are as follows: one arrow goes to the cell
state vector in the-th generation and thg¢-th group where the
i—(n—1) cellsbr(j 1), br(j2), s br(ji—(n—1)) are allin

state 2; the other arrow goes to the cell state vector in:itie
generation and thg-th group that is the same asexcept that its
cell br(j,i—(n—1)+1) is in state 2 instead of state 1.

Note that by the above construction, {2 — 3)-th generation
containsn(n — 1) cell state vectors, where each vector has 2
cells in state 2, one cell in state 1, and one cell in state 0.
The (2n — 2)-th generation of cell state vectors containst
’; elements, which we partition into two groups. The first group
contains all then vectors where: — 1 cells are in state 2 and on
cell is in state 0. The second group contains all (@@ vectors

wheren — 2 cells are in state 2 and two cells are in state 1. Al

[¢]

()

the cell state vectors in the first (resp., second) group correspond

to the variable vectofvy,v2) = (0, 0) (resp.,(1,1)).

The (2n — 1)-th generation of cell state vectors containst
1 elements, which we partition into two groups. The first group
contains all then cell state vectors whene— 1 cells are in state 2
and one cell is in state 1; the second group contains one cell
vector where all the: cells are in state 2. The cell state vectgrs

in the first (resp. second) group correspond to the variable vector

(’U17 UQ) = (170) (resp'(07 1))

Let a denote a cell state vector in tf{gn — 3)-th (resp.,(2n —
2)-th) generation. The two outgoing arrows @fenter two cell
state vectors of thé2n — 2)-th (resp.,(2n — 1)-th) generation,
respectively in the first group and in the second group, both of
which areabovea.

The aboven — 1 generations of cell state vectors form the first
period of the code. Repeat the period’s structure to get the 2nd,

3rd, - - - periods (as described before in this paper). Just remember

that for thei-th period, ifi is even, then switch the variable vector
(0, 0) with (1, 0), and switch the variable vect¢t, 1) with (0, 1).
If ¢ is finite, truncate the code to the maximum generation subject
to the constraint that all the cells’ states are at mgost 1.

Fig. 2.

Construction of a code fdr = 2,1 = 2 and arbitraryn, q.

ose

state

The code construction in Fig. 2 can be easily converteshdQ; > 0, P; > 0. That is our base case. Now we start the
into very efficient encoding (for rewriting) and decoding (foinduction.
mapping cell state vectors to variable vectors) algorithms. DueAssume that theassertionholds for anyi > I,. Now
to the space limitation, we skip the details. consider the case= I,. There are two subcases:
) Subcase 1: Thél, + 1)-th rewriting operation, Wy, 41,
B. A General and Tight Upper Bound to increases theweight of the cell state vectdsy 1. Then, let

We now present a general upper bound:tavhich holds _ denote the cell whose status is raised by 1Vby, ;. It
for any k,1,n and ¢. The bound can show that the code ifs not difficult to see thati, ¢ S;,, ax ¢ Syy41, clotl =
Fig. 2 is optimal. _ _ clo+1, ot = ¢l forany j # x, P;, = P41, and

Theorem 2:For any floating code, Ifr[v;g(lz_lf_(i]?_lz)— L, Q1, = Qr,+1+1. By the induction assumptiory — (Io+1) <
thent < [n—k(l—1)+1]- (¢ -1+ [=—5"—]1f Q.+ [T sowe getty — I < Qr, + |2]. So the
n<k(l—1)—1,thent < [@J. assertionholds.

Proof: First, considgr the case > _k(l —-1) -1 _ Subcase 2: Thél, + 1)-th rewriting operation, Wy, 1,

Assume that the floating code is given. Note that sincejcreases thaveight of the cell state vectdyy at least 2 Let
rewriting operation can update any of tlkevariables, and p;o - Ea-ESI (g—1— C§0+1), and IetQ/IO =3 25, (q—

. . . J 0 aj 0
every variable has— 1 p_o_ssmle vaIL_Jes that are dlf'fe_re_n_t_from1 _ C§0+1>. SincelV;, ., increases theveight of the cell state
its current value, a rewriting operanon_ Hag—1) pos§|b|llt|es vector by at least 2, there are two possibilities; @), >
that do change th_g value of _the variables. We will choose@[0 +1andP;, > Pj; (2) Q, = Q, and Py, > P} +2.
sequence of rewriting operation®;, Wy, Ws - - -, where W; Py , Py
denotes the-th rewriting operation. Foi = 1,2,---,n and N both cases, we g&@;, + [5*| > 1+ @7, + [5*].
j=0,1,2,--+, leta; denote the-th cell, and let] denote the ~ Now we compare); + L%J with Q.11+ LPI%“ |. Let’s
state of thei-th cell after thej-th rewriting operation. (S0 < partition then cells into four setsA4, B,C,D as follows:
¢, <q—1,and¢) = 0.) We choose the sequence of rewritingd = {a;|a; € Sy,,a; € S;, 11}, B = {ajla; ¢ Si,,a; ¢
operations — and build a sequence of s&{sS:,S>,--- atthe S, .1}, C = {ajla; € Siy,a; ¢ Siy+1}, D = {ajla; ¢

same time — in the following way: S1y,a5 € Siy41}. By definition, P , Q7 , Pryy1,Qr, 11 are
1. Let Sy be any subset ofa,as,---,a,} of cardinal- all summations of terms of the form— 1 — c; we see the

ity k(I — 1) — 1. (For example, we can les, = Vvalue ofq—1—cY as thecontribution of the celk,. It is not
{a1,az2, -+, apg-1)-1}.) difficult to see that every cell il or B contributes the same

2. Fori=1,2,3,--, do: value toQ7, + L%J and Q1 + | 29 |. As for the cells

{ For thei-th rewriting operatioriv;, if all the k(I —1) in ¢ andD, since|Sy,| = |Sr,41| = k(1—1) —1, |C| = |D|.
possible choices increase thesight of the cell state So we can partition the cells i U D into pairs in the form
vector (defined asy~_, c;, as before) by 1, choos#; of (a, € C,a, € D). Consider a paifa, € C,a, € D).
to be a rewriting operation that increases the state gfearly, clot1 > C£0+1 becauser, ¢ Sy 1 anda, € Sy 4.
acellp ¢ S;_1 by 1, otherwise, choosé&V; to be a) /
rewriting operation that increases thweight of the cell
state vectolby at least 2. L
Let S; be a subset ofa,as,---,a,} of cardinality Q} + =] > Q141+ L%J.

k(I — 1) — 1 satisfying this property: for any two cells Therefore, irSubcase 201, +| 2 | > 1+Qy, 11+ 235 .
a; € S; anda, ¢ Si, ¢; < ¢, (In other words,S; By the induction assumptioty — (Ip+1) < Q10+1+L%j,

containsk(l — 1) — 1 cells whose states are lower than Py) .
. . I, < o
or equal to the others’ afterrewriting operations.} o0 e gety —Io < Qr, + | ~*|. SO theassertionagain holds.

So in any case, thassertionholds wheni = I,.

we use the_ above metho_d_ to_keep obtaining rewri_ting We have now proved by induction that thesertionholds
operations until no more rewriting is allowed by the floating ., 0 < i< to. Note thatPy = |So|(q — 1) = [k(l — 1) —

code. Say that the above method gives us totgllyewriting ;4 “andQy = (n— D) = k(=111 (a—1).
operations:W, Wy, - -, Wy,. We will prove thatty < [n — B})EqmaIZingi S% in (the |assos|()e(r(t]ion,)we[ge@ i [n 141_@(%(3 1)1)L
k(l—1)+ 1.] (g—1)+ ij, which will in turn 1-(g—1)+ L[k(lq);l]»(q—l)J_ Since W, ﬁ/% W, isa
prove Fhe final conclusion. . maximal sequence of writing operations< ty3. So for any
Fori = 0,1, to, €U P =3, e5,(a =1 = cj), and 1t goaiing codet < [n—k(—1)+1]-(g—1)+| F=DZa=D)
Qi = 3 ,,¢s,(4—1—cj). We now use induction to prove the o consider the case < k(I — 1) — 1. There arek(i —
following assertion 1) possible choices for a rewriting operation (that changes
« Assertion:For any0 <i <tg, to—i < Q;+[%5]. (Note the value of the variables), but there are omly< k(I —
thatto — 1 is the number of rewriting operations we have) cells. So there is always a choice for the next rewriting
after the:-th rewriting operation.) operation that can increase theight of the cell state vector
The induction is in the reverse order of the rewriting opeby at least 2. We choose a maximal sequence of rewriting
ations. Wheni = ¢, the assertionis true becausé, —i =0 operationsiy, W, - - -, W, such that every¥; increases the

So a, anda, together contribute more Q7 + L%J than
0 Q41 + L%J. By combining the above results, we get

weight of the cell state vectdny at least 2. Theveight of the

cell state vectoran never exceed(q—1). Soty < [MJ.

For example, assume that= 4, ¢ = 3 and the rewriting
> operations change the variable vector, v2) as follows:
Sot < |mel), = (0,0) — (0,1) — (0,0) — (1,0) — (1,1). Then,

Theorem 2 shows that the code we presented in Fig. 2 is the cell state vector changes as follows;0,0,0) —
optimal. To see why, just make= 2 and! = 2 in Theorem 2, (0,0,0,1) — (0,0,1,1) — (1,0,1,1) — (2,1,1,2).
and compare it with Theorem 1. Therefore, Theorem 4:When n is odd, the floating code in Code

Theorem 3:The floating code presented in Fig. 2 is optiConstruction | hag = (n — 1)(¢ — 1); if n is even, it has
mal, namely, it maximizes the number of times of rewriting = (n — 2)(¢q — 1) + 1.

t. Proof: When every cell is either in state or a + 1,

The above observation also s_hows that whgné\ﬁer2 and we say that the cells are iphasea + 1. So the rewriting
I = 2, the upper bound shown in Theorem 2 is exact. In thigperations change the cells from phase 1 to phase- 2-t
sense, the bound is tight. phasey — 1. Consider phase 1. Every rewriting increaseor
x3 by 1, andz; + 23 <n — 1. Son — 1 rewriting operations
can happen in phase 1.

In this section, we present two linear codes for binary When a rewriting operation changes the cells from phase 1
variables. Both codes havém,, ...t = (¢ — 1)n + o(n). to phase 2, the following analysis considers the worst cases:
Since all floating codes have< (¢ — 1)n, the two codes are (1) Whenn is even, the rewriting operation can make the
asymptotically optimal im. variable vector becomév;,v9) = (1,1), so in phase 2, both

In both codes, every cell essentially corresponds to am andzs need to be set as 1; (2) Wheris odd, the rewriting
integer, and a linear combination of those integers form tig@eration cannot make the variable vector (bel). That is
numerical representation of the variables. We borrow the because right before the rewriting operatien+ x5 = n — 1
idea from the WOM codes proposed by Fiat and Shamir in [3F even, so the variable vector is eit{@r 0) or (1, 1). So the
Those WOM codes are for updating a single variable in rg@writing operation changes the variable vector to be either
binary WOM. The floating codes we present are, respectively; 0) or (0, 1); therefore in phase 2, eithef = 1,23 =0 or
for rewriting two or three variables ip-ary WAMs. r1 = 0,23 = 1. So whenn is odd (resp., eveny, — 1 (resp.,

We define a functionodd(z) as follows: for any non- n — 2) rewriting operations can happen in phase 2. Phases
negative integerz, if = is odd, odd(xz) = 1; otherwise, 3,4,-~-,.q—1 are the same as phase 2. That leads to the final
odd(z) = 0. Let (a¥'a3? - --a7") denote a string that consistsconclusion. u
of z; consecutives,’s, followed by z, consecutives,’s, - - -, By theorems 2 and 4, we see that whes- 2, the above
ended withx;, consecutivea;’s. For example,(120110%) code is strictly optimal.
is (1,1,0,1,0,0,0). Given the value oft binary variables
x = (v1,v9,--+,v), f(z) mapsx to a number between 0
and2® — 1: f(x) = vy - 2F 1 fug - 2872 gy - 20

IV. ASYMPTOTICALLY OPTIMAL LINEAR CODES

« Code Construction Ik = 3,1 = 2,n > 5, arbitrary ¢
In this code, a valid cell state vectdry,ca,---,cy)
always satisfies the following two constraints: {1}, 7,

Below are the constructions of the two floating codes.

« Code Construction 1k = 2,1 = 2,n > 3, arbitrary ¢
In this code, a valid cell state vectde;,ca,---,¢p)
always satisfies the following two constraints: {1}, j,
lei — ¢l <1;(2) (e1,¢2,+,¢) = ((a+ 1) a2 (a +
1)*3) for somea, x1,x2,x3 Where0 <a < ¢— 1,21 +
o + x3 = n,xs > 1. (For example, whem = 5, ¢ = 3,
(1,1,1,0,1) = (1%0'1') and (1,1,1,1,2) = (2°1%2")
are both valid cell state vectors.)
A cell state vectof(a+1)*1a*2(a+1)*3) corresponds to
the variable vectoy = (vy,vs,- -+, vx) in the following
way: f(y) = odd(z1) - 2 + odd(z3). (For example, when
n = 5,¢ = 3, both cell state vector$l,0,0,0,1) and
(2,2,2,1,2) correspond to the variable vectar,, v2) =
(1,1))
The rewriting operation is as follows. When the rewriting
changes the value of variable (resp.,v2), we usually
increaser; (resp.,x3) by 1 and decrease; by 1. The
exception happens wher, = 1; in that case, we first
raise all the cells to the state+ 1 (which makesr; =
x3 = 0 andxo = n), then increase:; or xz3 (or both)
based on necessity.

lei —¢;] < 1; (2) the cell state vector is either in the form
((a+1)*a (a + 1)*3a% (a + 1)**), where>"_, z; =
n,xo > 1,24 > 1 (which we callform I), or in the form
((a+1)**a®2(a+1)*"), wherez; + a2 +25 = n,a2 > 1
(which we callform 11).

A cell state vector corresponds to the variable vegter
(v1,v9,--+,v) in the following way: if the cell state
vector is inform |, then f(y) = odd(z1) - 4 + odd(x3) -

2 + odd(x5); if the cell state vector is iform IlI, then
f(y) = odd(x1) - 4 + odd(zs).

The rewriting operation is as follows. When the rewriting
changes the value of variablg (resp.,v3), we usually
increaser; (resp.,z5) by 1 and decrease, (resp.,z4 or

2o, depending on if the cell state vector isfiorm | or
form 1) by 1. When the rewriting changes the value of
variablev,, we either increase; by 1 and decreass, or

x4 by 1 (when the cell state vector isform [), or change
the cell in the middle of the sequenced$ from statea

to staten+1 (when the cell state vector is farm I1). If z-

or x4 becomes zero due to the above operation, the cell
state vector is reevaluated, and the operation described
above is carried out again based on the values of the

variables. If the above operation cannot be carried out Proof: First, consider the general calse> 1. DefineS as
any more when the cells remain in the current two statés= {(ai,az, -, an)|> 1y a; < w,a1,as,--,a, are non-

— statea and statez + 1 — then we start to use the twonegative integefs and letw be the smallest integer such that
statese + 1 anda + 2, in the same way as we have usedS| > [*. DefineS’ asS’ = {(d1,dz, -, dpn)| >y di <w+

the two statest anda + 1 above. n,dy,ds, -, d, are positive integeis By lettingd; = a; +1
The following examples show how the code workdori=1,2,---,n, we see that there is a one-to-one mapping
Assume thatn = 10,¢ = 3. (1) If the cell state vector betweenS andS’. So|S| = |S’|. An element(dy, da, - -, dy)

is (110°19), then (v1,v2,v3) = (1,0,0); if the next two belongs toS’ if and only if it is a solution to the following
rewriting operations changév;, v, vs) to (0,0,0) and problem: partition a path ofv + n vertices inton or more
then to(0, 1,0), the cell state vector changes(i?081Y), sub-paths such that far= 1,2, ---,n, the i-th sub-path has

and then to(120°110%1°). (2) If the cell state vector is d; > 0 vertices. Therefore|S’| = (*/™). Sow is also the
(130'110*11), then (vy,va,v3) = (1,1,1); if the next smallest positive integer such tht ™) > i*.
two rewriting operations change:, vz, vs3) to (0,1,1) k consecutive rewriting operations can make the variables
and then to0(0,1,0), the cell state vector changes tahange to or go through any of tfi& possible values. If we
(150'110'11), and then to(2°14211529). seeq; (for i = 1,2,---,n) as the increase in; — the state of
Theorem 5:The floating code in Code Construction Il haghe i-th cell — and consider the way andw are defined, we
t>(n—6—2logyn)(¢g—1)+2. see that whatever the current cell state vector is, there kxist

Proof: A rewriting operation increases theeight of the consecutive rewriting operations that increaseswviegght of
cell state vectoby one except in the following three occasionsthe cell state vectod ., ¢; by at leastw. Now consider the
(1) The rewriting makes:, or 4 become zero, in which casefirst batch of suchk rewriting operations, the second batch,
the weight of the cell state vect@an be increased by at mostand so on. Since the maximum weight of the cell state vector
3; (2) The rewriting cannot be accomplished while the cells (¢ — 1)n, we gett < f%]k.
continue to use the current two states, which happens only ifFor the slightly more restrictive case> 2, we refine the
z3 + x4 < 4 before the rewriting; (3) When the previous casghove proof a little. Whett > 2, among the cell state vectors
happens, the rewriting is accomplished by making cells uggatk consecutive rewriting operations can make the cell state
the next pair of states, which leadsi < 1,23 < 1,25 <1 vector change to or go through, there are at least two cell state
(that is, increasing theveight of the cell state vectdsy at vectors (including the current cell state vector) that correspond
most 3). to the current variable vector. The rest of the proof is similar.
Let @ anda + 1 indicate the two states that the cells are in. ™
Every time after the cell state vector changes frfomn. Ilinto Whenk or [is sufficiently large, theorem 6 gives an upper
from 1, case (1) can happen only once. For any fixedhe pound tot that is roughly 4=1"* " Now we present an
cell state vector can change inform | no more thanog, n (nh)win
times, because such a change is caused by splitting a Sequgtll%@entary lower bounq.) "
of consecutive cells in state into two nearly equally long '_I'?eorem 7:There exist floating codes where> || -
subsequences in staie- with a cell of statex + 1 separating =l
them — and the length of this sequence at least halves every Proof: We show a code that achieves the bound. For
time. So case (1) happens at mégt- 1) log, n time in total. ¢ = 1,2,---,kandj = 0,1,---,| 2] — 1, let the (i + jk)-
Both case (2) and case (3) happen at most once for any fitbcell be used for theé-th variable. Thei-th variable is first
a, and case (3) happens onlydf> 0. Therefore, if we use encoded using théth cell, then the(i + k)-th cell, and so on.
21, 22, 23 10 represent, respectively, the numbers of times thEer a cell, the value of the variable it corresponds to equals its
cases (1), (2) and (3) happen, and useto represent the State moduld unless its state becomes- 1, which indicates
number of rewriting operations that do not involve those thrdBat this cell is “no longer usable.” This gives a code with
cases, theBz; + 429 + 323 + 24 > n(qg — 1). Sincez; < t=1%]" L%J u
(q—1)logyn,zo < q—1,23 < q—2, We getz; + z3 + 24 > Theorem 8:Whenk, [, q are fixed andh — oo, there exist
(n—6—2logyn)(q—1)+2. Sot > (n—6—2log, n)(¢—1)+2. floating codes wheré= (¢ — 1)n + o(n).
| Proof: The idea is on the conversion between floating
codes and WOM codes. A (binary) WOM is a special case
] of WAM with ¢ = 2, and a WOM code is a special case of
A general upper bound tohas been shown in theorem 25ating codes with = 1. Rivest and Shamir have shown a
It has also been shown that whén= 2,1 = 2, the bound is apylar WOM code [9] achieving= n-+o(n) asl is fixed. We
exact. For largé: or [, the following theorem can give a bettefog, see the: variables from an alphabet of sizeas a super

V. BOUNDS FORFLOATING CODES

upper bound. o variable from an alphabet of siz€. Then, every rewriting for
wIQeoreT 6:Letw be t(?glirlnallest positive integer such thahe 1 variables is an instance of the rewriting of the super
("37") = 1%, Then,t < [k. variable (although notice versy We can therefore use the

Let w' be the smallest positive integer such t4t*") > WAM layer by layer: first use the states 0 and 1 as much as
k. Then, whenk > 2, t < (M}k. possible, then use the states 1 and 2 in the same-wayhen

w’

use the stateg— 2 andq— 1. For each layer, apply the tabular
WOM code to the super variable. That gives us a floating code
with t = (¢ — 1)n + o(n). [|

Theorem 8 shows that when — oo, floating codes
can integrate the WAM’s rewriting capabilities for different
variables nearly perfectly.

VI. CONCLUSIONS

Floating codes for WAMs have been explored in this paper.
Both optimal/asymptotically optimal floating codes and per-
formance bounds for general codes have been presented. They
show that floating codes can integrate very well the rewriting
capabilities of different variables in many cases. Such an
ability is useful for the storage of multiple variables in WAMs,
including flash memories, etc. as example applications. We
will continue the exploration of floating codes, and expand
the knowledge on coding in memories with irreversible state
transitions.

REFERENCES

[1] P. Cappelletti, C. Golla, P. Olivo and E. Zanomid), Flash memories
Kluwer Academic Publishers, 1st Edition, 1999.

[2] G. D. Cohen, P. Godlewski and F. Merkx, “ Linear binary code for write-
once memories,IEEE Trans. Inform. Theoryvol. IT-32, pp. 697-700,
Sept. 1986.

[3] A. Fiatand A. Shamir, “Generalized ‘write-once’ memorid&€EE Trans.
Inform. Theory vol. IT-30, pp. 470-480, May 1984.

[4] F. Fu and A. J. Han Vinck, “On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic
graph,” IEEE Trans. Information Theoryol. 45, no. 1, pp. 308-313,
1999.

[5] S. Gregori, A. Cabrini, O. Khouri and G. Torelli, “On-chip error correct-
ing techniques for new-generation flash memori€sgceedings of The
IEEE, vol. 91, no. 4, April 2003.

[6] C.Heegard, “On the capacity of permanent memdB£E Trans. Inform.
Theory vol. IT-31, pp. 34-42, Jan. 1985.

[7] A. V. Kuznetsov and A. J. H. Vinck, “On the general defective channel
with informed encoder and capacities of some constrained memories,”
IEEE Trans. Inform. Theoryol. 40, no. 6, pp. 1866-1871, Nov. 1994.

[8] F. Merkx, “WOMcodes constructed with projective geometriegaite-
ment du Signalvol. 1, no. 2-2, pp. 227-231, 1984.

[9] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,”
Information and Contrglvol. 55, pp. 1-19, 1982.

[10] J. K. Wolf, A. D. Wyner, J. Ziv and J. Korner, “Coding for a write-once
memory,” AT&T Bell Labs. Tech. Jvol. 63, no. 6, pp. 1089-1112, 1984.

