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Abstract—NAND flash memories have become the most widely
used type of non-volatile memories. In a NAND flash memory,
every block of memory cells consists of numerous pages, and
rewriting a single page requires the whole block to be erased.
As block erasures significantly reduce the longevity, speed and
power efficiency of flash memories, it is critical to minimize the
number of erasures when data are reorganized. This leads to the
data movement problem, where data need to be switched in blocks,
and the objective is to minimize the number of block erasures.
It has been shown that optimal solutions can be obtained by
coding. However, coding-based algorithms with the minimum
coding complexity still remain an important topic to study.

In this paper, we present a very efficient data movement
algorithm with coding over GF(2) and with the minimum storage
requirement. We also study data movement with more auxiliary
blocks and present its corresponding solution. Furthermore, we
extend the study to the data aggregation problem, where data
can not only be moved but also aggregated. We present both
non-coding and coding-based solutions, and rigorously prove the
performance gain by using coding.

I. INTRODUCTION

NAND flash memories have become by far the most widely
used non-volatile memories (NVMs). In a NAND flash mem-
ory, floating-gate memory cells are organized as blocks. Every
block is further partitioned into pages. The page is the basic
unit for read and write operations [1]. Typically, a page stores
2KB to 4KB of data, and a block has 64 or 128 pages [2].
Flash memories have a prominent block erasure property:
once data are written into a page, to modify the data, the
whole block has to be erased and reprogrammed. A block can
endure only 104 ∼ 105 erasures before it may break down, so
the longevity of flash memories is measured by erasures [1].
Block erasures also significantly reduce the writing speed
and the power efficiency of flash memories. Therefore, it is
critical to minimize the number of erasures when data are
reorganized [2]. This leads to the data movement problem,
which has been studied in [3], [5]. Although data movement
is common in all storage systems, the unique block erasure
property of flash memories calls for special solutions.

In the data movement problem [3], [5], there are n blocks
storing data, where every block has m pages. The nm pages
of data need to be switched among the n blocks with speci-
fied destinations. There are δ empty blocks called auxiliary
blocks that can help store intermediate results during the
data movement process. The objective is to minimize the
number of block erasures. It was proved in [5] that optimal
solutions can be obtained by using coding. Furthermore, a
coding-based algorithm using at most 2n − 1 erasures for

δ = 1 was presented [5], which is worst-case optimal. The
algorithm in [5] requires coding over a large Galois field;
to reduce the coding complexity, it was shown in [3] later
that there exist solutions with coding over GF(q) for q ≥ 3.
However, it remained an open question whether there exist
optimal solutions that use coding over GF(2). The answer
is important for obtaining optimal data movement algorithms
with the minimum coding complexity.

In this paper, we show the answer is positive by pre-
senting an efficient optimal algorithm over GF(2) when
δ = 1 (i.e., minimum number of auxiliary blocks). When
δ ≥ 2, we present a coding-based algorithm that uses at
most 2n − min{δ, �n/2�} erasures. Although it is NP hard
to minimize the number of erasures for every instance (i.e.,
per-instance optimization), the above algorithms can achieve
constant approximation ratios.

We further extend the study to the data aggregation prob-
lem, where data can not only be moved, but also aggregated.
Specifically, data of similar attributes are required to be placed
together, although the destination may not be specified; in
other cases, the final data can be functions of the original data.
Data aggregation has many applications in flash memories.
For example, for wear leveling (i.e., balancing erasures across
blocks), it is beneficial to store frequently modified data (i.e.
hot data) together and store cold data together [2]. In flash-
based databases, the temporarily stored raw data need to
be organized as structured data [6]. The external memories
of sensors often use flash memories, where aggregation is
important for analyzing the collected data.

We present both non-coding and coding-based algorithms
for data aggregation. We present a lower bound for the number
of erasures needed by non-coding solutions, which is very
close to the upper bound obtained from our algorithm. The
lower bound also rigorously proves the performance gain by
using coding because the coding-based algorithms use only a
linear number of erasures, which is asymptotically optimal.

Due to the space limitation, we skip some details in multiple
places. Interested readers are referred to [4] for the full paper.

II. OPTIMAL DATA MOVEMENT OVER GF(2)

In this section, we present an optimal data movement
algorithm with coding over GF(2), which has very low coding
complexity. First, let us define the data movement problem [5].

Definition 1. DATA MOVEMENT PROBLEM
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Consider n blocks storing data in a NAND flash mem-
ory, where every block has m pages. They are denoted by
B1, . . . , Bn, and the m pages in block Bi are denoted by
pi,1, . . . , pi,m, for i = 1, . . . , n. Let α(i, j) and β(i, j) be two
functions:

α(i, j) : {1, . . . , n} × {1, . . . , m} → {1, . . . , n};

β(i, j) : {1, . . . , n} × {1, . . . , m} → {1, . . . , m}.

The functionsα(i, j) and β(i, j) specify the desired data move-
ment. Specifically, the data initially stored in the page pi, j are
denoted by Di, j, and need to be moved into page pα(i, j),β(i, j),
for all (i, j) ∈ {1, . . . , n} × {1, . . . , m}.

There are δ empty blocks, called auxiliary blocks, that can
be used in the data movement process, and they need to be
erased in the end. To ensure data integrity, at any moment of
the data movement process, the data stored in the flash memory
blocks should be sufficient for recovering all the original data.
The objective is to minimize the total number of block erasures
in the data movement process.

We assume that each of B1, . . . , Bn has at least one page
of data that needs to be moved to another block, because
otherwise it can be excluded from the problem. Since a block
has to be erased whenever any of its pages is to be modified,
the data movement needs no less than n erasures.

n pages of data {D1, j1 , D2, j2 , . . . , Dn, jn} are called a block-
permutation data set if {α(1, j1),α(2, j2), . . . ,α(n, jn)} =
{1, 2, . . . , n}. Clearly, the data in a block-permutation data
set belong to n different blocks (i.e., B1, . . . , Bn) both before
and after the data movement process. It is proved in [5] that
the nm pages of data in B1, . . . , Bn can be partitioned exactly
into m block-permutation data sets.

Example 2. Let n = 21 and m = 3. Let the nm values of
α(i, j) be shown as the m × n matrix in Fig. 1. (For example,
α(1, 1) = 6,α(1, 2) = 15,α(1, 3) = 7.) We can partition
the nm = 63 pages of data into m = 3 block-permutation data
sets, denoted by ♥, ♠ and ♦ in Fig. 1. In the figure,α(i, j)♥ (or
α(i, j)♠,α(i, j)♦, respectively) means that the data Di, j belong
to the block permutation data set ♥ (or ♠, ♦, respectively).

In this section, we consider δ = 1. Let y be the smallest
integer in {1, 2, . . . , n − 2} with this property: for any i ∈
{y + 3, y + 4, . . . , n} and j ∈ {1, . . . , m}, either α(i, j) ≤ y
or α(i, j) ≥ i− 1. Our algorithm will use n + y + 1 ≤ 2n− 1
erasures. This is worst-case optimal, because there are known
cases where 2n − 1 erasures are necessary [5]. Note that we
can label the n blocks storing data as B1, . . . , Bn in n! different
ways and get different values of y. If we focus on per-instance
optimization (i.e., optimization for every given instance), then
it is known that there is a solution with n + z + 1 erasures
if and only if we can label the n blocks as B1, . . . , Bn such
that y ≤ z [5]. Therefore, our algorithm can also be readily
utilized in per-instance optimal solutions. However, it is NP
hard to label B1, . . . , Bn such that y is minimized [5].

The algorithm to be presented will work the same way for
the m block-permutation data sets in parallel. Specifically, for
every block and at any moment, the block’s m pages are used
by the m block-permutation data sets (one for each). So for
convenience of presentation, in the following, we consider only
one of the m block-permutation data sets. So let B0 denote the
auxiliary block, and for i = 0, 1, . . . , n, assume Bi has only
one page. (Again, note that the block-permutation data set in
consideration uses only one page in Bi.) For i = 1, . . . , n, let
Di denote the data originally stored in Bi. For i = 1, . . . , n,
we use α(i) ∈ {1, . . . , n} to mean that the data Di need to
be moved to block Bα(i). Let α−1 be the inverse function of
α. (That is, ∀ i ∈ {1, . . . , n}, α(α−1(i)) = i.)

We now introduce the data movement algorithm. In our al-
gorithm, every block is erased at most twice. More specifically,
the algorithm has three stages:

1) Stage one: For i = 1, 2, . . . , y + 1, we write some coded
data (which are the XOR of the original data and will
be defined later) into Bi−1, then erase Bi.

2) Stage two: For i = y + 2, y + 3, . . . , n, we write
Dα−1(i−1) into Bi−1, then erase Bi. Then, we write
Dα−1(n) into Bn and erase By.

3) Stage three: For i = y − 1, y − 2, . . . , 0, we write
Dα−1(i+1) into Bi+1, then erase Bi.

We still need to specify what the coded data are in the
algorithm, and prove that at all times the data stored in the
flash memory are sufficient for recovering all the original data.
The data stored during the data movement process can be
represented by a forest. For example, for the problem in Ex-
ample 2, if we consider the block-permutation data set labelled
by ♥, then the forest is as shown in Fig. 2. Here every vertex
represents a page of original data, and every edge (or hyper-
edge) represents the XOR of its endpoint vertices. The forest
shows all the data used by the algorithm. When the algorithm
runs, there are always n linearly independent data symbols
stored in the flash memory, which enables the recovery of all
the original data D1, . . . , Dn. The forest structure makes it
very efficient to analyze the linear independency.

Let us show how the forest is obtained. For i =
1, 2, . . . , y + 1, we define S̃i ⊆ {i, i + 1, . . . , n} as a set that
is recursively constructed as follows: 1) i ∈ S̃i; 2) For any
j ∈ S̃i, if max{ j, y + 1} ≤ α( j) < n, then α( j) + 1 ∈ S̃i.

Lemma 3. The y + 1 sets S̃1, S̃2, . . . , S̃y+1 form a partition of
the set {1, 2, . . . , n} \ {i|y + 2 ≤ i ≤ n,α(i) = i − 1}.

Proof: We need to prove that: 1) S̃i ∩ S̃ j = ∅ for any

i �= j; 2) For any i ∈ {1, . . . , n}, i /∈ ∪y+1
i=1 S̃i if and only if

i ≥ y + 2 and α(i) = i − 1.
For i ∈ {1, . . . , y + 1}, the integers in S̃i form a prefix

of the sequence: {i, α(i) + 1, α(α(i) + 1) + 1, α(α(α(i) +
1)+ 1)+ 1, . . . }. The set S̃i is the longest prefix that satisfies
two conditions: (1) it monotonically increases; (2) the second
number (if it exists) is at least y + 2. Since α is a bijection,
we can see that S̃i ∩ S̃ j = ∅ when i �= j.
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6♥ 4♠ 10♥ 11♦ 2♦ 3♠ 5♠ 17♥ 16♥ 14♥ 12♦ 1♠ 16♦ 3♦ 17♠ 21♦ 2♥ 17♦ 6♦ 19♦ 4♥
15♠ 1♥ 9♠ 10♠ 11♥ 1♦ 9♦ 11♠ 13♦ 14♦ 13♥ 19♥ 12♠ 19♠ 18♦ 20♥ 5♦ 18♥ 20♠ 7♠ 8♠
7♦ 4♦ 8♦ 12♥ 2♠ 9♥ 5♥ 10♦ 16♠ 14♠ 13♠ 15♦ 15♥ 8♥ 21♥ 18♠ 21♠ 6♠ 7♥ 3♥ 20♦

Fig. 1. The matrix of α(i, j) for i = 1, . . . , n, j = 1, . . . , m, and the partition of data into m block-permutation data sets.

D1 D2

D1 D2
D17

D2 D17

D6 D10 D15 D9

D9 D17

S 1 S 2

D6 D10 D15 D17

S 6 S 9

D3 D11

D14

D14 D20D3 D11

D20

D12D5

D20 D7D5 D12

D19D7

D7 D19

D8 D18

D19D8 D18

S 3 S 5

S 7

S 8

D21

D13D4 D16

D16 D21D4 D13

S 4

Fig. 2. Data movement with coding over GF(2).

For i = 1, . . . , y + 1, since i ∈ S̃i, we have i ∈ ∪y+1
j=1 S̃ j.

So if i /∈ ∪y+1
j=1 S̃ j, then i ≥ y + 2. Consider i ≥ y + 2. By the

definition of the parameter y, either α(i) ≤ y, or α(i) = i− 1,
or α(i) ≥ i. When α(i) ≤ y or α(i) ≥ i, by the definition
of S̃1, S̃2, . . . , S̃y+1, we can see that i belongs to the S̃x (for
some x ∈ {1, . . . , y + 1}) that α−1(i − 1) also belongs to.
When α(i) = i − 1, i cannot belong to any S̃x.

Let η ∈ {1, 2, . . . , y + 1} be the unique integer such that
α−1(n) ∈ S̃η. For any set of numbers C, let max(C) denote
the greatest number in C. We have the following observation.

Lemma 4. Throughout stage one and stage two of the algo-
rithm, for any i ∈ {1, . . . , y + 1}, among the

∣
∣S̃i

∣
∣ pages of

data in {Dj| j ∈ S̃i}, at least
∣
∣S̃i

∣
∣ − 1 pages of data are stored

in their original form in the flash memory.
When stage two of the algorithm ends, all the

∣
∣S̃η

∣
∣ pages of

data in {Dj| j ∈ S̃η} are stored in their original form. And for
any i ∈ {1, . . . , y + 1} \ {η}, the only page of data in {Dj| j ∈
S̃i} that may not be stored in its original form is Dmax(S̃i)

.

Proof: For any i ∈ {1, . . . , y + 1}, the integers in S̃i are
of the form: {i, α(i) + 1, α(α(i) + 1) + 1, . . . }. In stage
one and stage two of the algorithm, after Di is written into
Bα(i), Dα(i)+1 is erased from Bα(i)+1; then Dα(i)+1 is written
into Bα(α(i)+1), and Dα(α(i)+1)+1 is erased from Bα(α(i)+1)+1;
and so on. So the conclusions hold.

We define S1, S2, . . . , Sy+1 as follows. If η = y + 1, then
Si = S̃i for i = 1, . . . , y + 1. If η �= y + 1, then Si = S̃i for

i ∈ {1, . . . , y + 1} \ {η}, and Sη = S̃η ∪ {max(Sy+1)}.
We define A1, A2, . . . , Ay as follows. If η = y + 1, then

Ai = max(Si) for i = 1, . . . , y. If η �= y + 1, then Ai =
max(Si) for i ∈ {1, . . . , y} \ {η}, and Aη = max(Sy+1).

Example 5. Consider Example 2, where n = 21. We can
verify that y = 8 here. Consider the block-permutation data
set labelled by ♥, for which we get (α(1), . . . ,α(21)) =
(6, 1, 10, 12, 11, 9, 5, 17, 16, 14, 13, 19, 15, 8, 21, 20, 2, 18, 7, 3, 4).

Then, we get S̃1 = {1}, S̃2 = {2}, S̃3 = {3, 11, 14},
S̃4 = {4, 13, 16, 21}, S̃5 = {5, 12, 20}, S̃6 = {6, 10, 15},
S̃7 = {7}, S̃8 = {8, 18, 19}, S̃9 = {9, 17}. And η = 6.

Furthermore, we get Si = S̃i for i ∈ {1, . . . , 9} \ {6},
and S6 = {6, 10, 15, 17}. And we get (A1, . . . , A8) =
(1, 2, 14, 21, 20, 17, 7, 19). (Note how S1, . . . , Sy+1 and
DA1 , . . . , DAy appear in Fig. 2.)

Lemma 6. (α(A1),α(A2), . . . ,α(Ay)) is a permutation of
(1, 2, . . . , y).

Proof: By the definition of S̃i and Si, we can see α(Ai) ∈
{1, . . . , y} for i ∈ {1, . . . , y}. Since α is a bijection, α(Ai) �=
α(Aj) when i �= j.

Let γ be the permutation over (1, 2, . . . , y) such that for
i ∈ {1, . . . , y}, γ(i) = α(Ai). Let γ−1 be the inverse function
of γ. Since γ is a permutation, it can be decomposed into
disjoint permutation cycles. (A permutation cycle in γ is an
ordered set of distinctive integers (x0, x1, . . . , xz−1), where
xi ∈ {1, 2, . . . , y} for i ∈ {0, 1, . . . , z − 1}, such that for
i = 0, 1, . . . , z − 1, γ(xi) = xi+1 mod z.)

For i = 1, . . . , y, we define the data bi as follows. If i is not
the greatest number in its corresponding permutation cycle in
γ, then bi = DA

γ−1(i)
. Otherwise, bi = 0. (Here 0 denote a

page of data where all the bits are 0.)

Example 7. We follow Example 5, where y = 8. We
have (γ(1), γ(2), . . . , γ(8)) = (6, 1, 8, 4, 3, 2, 5, 7), and
(γ−1(1), γ−1(2), . . . , γ−1(8)) = (2, 6, 5, 4, 7, 1, 8, 3).
The permutation γ consists of three permutation
cycles: (6, 2, 1), (8, 7, 5, 3), and (4). So we have
(b1, b2, . . . , b8) = (DA2 , DA6 , DA5 , 0, DA7 , 0, DA8 , 0) =
(D2, D17, D20, 0, D7, 0, D19, 0).

Let ⊕ denote the bit-wise XOR operation. In the following,
the summation sign ∑ also denotes the ⊕ operation. We can
now specify the coded data written into Bi−1 in stage one of
the algorithm. For i = 1, . . . , y, the coded data written into
Bi−1 is

bi ⊕ ∑
j∈Si

Dj;
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and the coded data written into By is ∑ j∈Sy+1
Dj.

Example 8. We follow Example 5. When we use our algorithm
to move data, the data stored in the n + δ = 22 blocks at
different times are shown in Fig. 3. For i = 0, 1, . . . , 21, the
data in the column labelled by i are the data stored in block Bi.

The algorithm is proved correct by the following theorem.

Theorem 9. When the data-movement algorithm runs, there are
always n linearly independent pages of data stored in the flash
memory, which can be used to recover all the original data.

Proof: We present a sketch of the proof here. We first
show how to build a forest as the one in Fig. 2, which contains
all the data stored during the data movement process. The
forest has n vertices, representing the data D1, . . . , Dn. (So
we will let Di also denote its corresponding vertex.) For every
edge in the forest (which can be a hyper-edge), the data it
represents are the XOR of the edge’s incident vertices. Let’s
explain how the edges are built:

• First, for i = 1, . . . , y + 1, if |Si| > 1 (which means
{i} ⊂ Si), then the vertices in {Dj| j ∈ Si} are incident
to the same edge.

• Second, for every permutation cycle (x0, x1, . . . , xz−1)
in γ, for i = 0, 1, . . . , z − 1, if xi �=
max{x0, x1, . . . , xz−1}, then vertex DA

γ−1(i)
is incident

to the edge with vertices in {Dj| j ∈ Si} as endpoints.
(If Si = {i}, then connect vertex DA

γ−1(i)
to vertex Di.)

During stages one and two of the algorithm, by Lemma 4,
for the data in {Dj| j ∈ S̃i} (for i = 1, . . . , y + 1), at most
one page of data may not be stored in its original form, and it
is compensated for by the stored data that contains the form
∑ j∈S̃i

Dj. During stage three, the only data not stored in their
original form are DA1 , . . . , DAy , which correspond to γ. And
they can be recovered by decoding data using the permutation
cycles in γ. For the detailed proof, please see [4].

III. DATA MOVEMENT WITH δ ≥ 1
We now study the data movement problem with δ ≥ 1

auxiliary blocks, which we denote by Bn+1, Bn+2, . . . , Bn+δ.
For y = 1, 2, . . . , n− 2 and k = y + 1, y + 2, . . . , n, define

R(y, k) = {(i, j)|k < i ≤ n, 1 ≤ j ≤ m, y < α(i, j) < k}.
That is, {Di, j|(i, j) ∈ R(y, k)} are those data that need to be
moved from Bk+1, . . . , Bn to By+1, . . . , Bk−1. Define r(y) =
maxk∈{y+1,y+2,...,n} |R(y, k)|. For Δ = 1, 2, . . . , δ, define
η(Δ) = min{y ∈ {1, 2, . . . , n − 2} | r(y) ≤ (Δ − 1)m}.
We define Emin as Emin = minΔ∈{1,2,...,δ} Δ + η(Δ) + n.

We present a data-movement algorithm that uses Emin
erasures. Let Δmin ∈ {1, . . . , δ} be an integer such that
Δmin + η(Δmin) + n = Emin. Let C be an ((Δmin +
η(Δmin) + n)m, nm) MDS code, whose codeword is

(I1 I2 . . . Inm P1 P2 . . . P(Δmin+η(Δmin))m).

Here the codeword symbols I1, I2, . . . , Inm are the
nm pages of original data D1,1, D1,2, . . . , Dn,m, and

P1, P2, . . . , P(Δmin+η(Δmin))m are the parity-check symbols.
We can use the generalized Reed-Solomon code as C. The
algorithm has three steps: (1) For i = 1, 2, . . . , Δmin,
we write the data P(i−1)m+1, P(i−1)m+2, . . . , P(i−1)m+m
into the block Bn+i; (2) For i = 1, 2, . . . , y, we erase
the block Bi, and write the data PΔminm+(i−1)m+1,
PΔminm+(i−1)m+2, . . . , PΔminm+(i−1)m+m into the block Bi.
(3) For i = y + 1, y + 2, . . . , n and then for i = 1, 2, . . . , y,
we erase the block Bi, then write into Bi the m pages of data
that the data movement problem requires to move into Bi.
Then, erase Bn+1, Bn+2, . . . , Bn+Δmin . The correctness of the
algorithm is proved in [4].

There are n! ways to label the n blocks originally storing
data as B1, . . . , Bn, and every labelling can give a different
value of Emin. If we use π to denote the labelling, then
the minimum number of erasures the algorithm can achieve
is minπ Emin. We present the proof in [4] that this is also
strictly optimal for the given instance. However, it is NP hard
to choose the best π . Nevertheless, we can always obtain a
2-approximation by selecting parameters as specified in the
theorem below. (For the detailed analysis, please refer to [4].)

Theorem 10. For any labelling of the blocks {B1, . . . , Bn}, we
can choose to use Δ = min{δ, �n/2�} auxiliary blocks and
y = n − 2Δ blocks among {B1, . . . , Bn} to store the parity-
check symbols of C. Then the data movement algorithm will
use Δ + y + n = 2n−min{δ, �n/2�} erasures in total, which
is a 2-approximation.

IV. DATA AGGREGATION

We now generalize our study to data aggregation. It in-
cludes the data movement problem as a special case. We first
study the basic data aggregation problem, where data of the
same type need to be stored together, but their order is not
specified. It will be extended later to the case where the final
data can be functions of the original data.

Definition 11. BASIC DATA AGGREGATION PROBLEM

Consider n blocks storing data in a NAND flash mem-
ory, where every block has m pages. They are denoted by
B1, . . . , Bn. There are also δ empty blocks Bn+1, . . . , Bn+δ.
The m pages in block Bi are denoted by pi,1, . . . , pi,m, and the
data initially stored in pi, j are denoted by Di, j. Let k ≤ n be a
positive integer. Let α(i, j) and C(i) be two functions:

α(i, j) : {1, . . . , n} × {1, . . . , m} → {1, . . . , k};

C(i) : {1, . . . , n + δ} → {1, . . . , k} ∪ {⊥}.

We say that the data Di, j are of the color α(i, j), and that the
block Bi is of the color C(i) if C(i) ∈ {1, . . . , k}. If C(i) = ⊥,
then we say Bi is colorless.

The functions α(i, j) and C(i) specify the desired data ag-
gregation. Specifically, for i = 1, . . . , n and j = 1, . . . , m, the
data Di, j need to be moved into a block of the matching color
α(i, j). The colorless blocks need to be erased in the end. The
objective is to minimize the total number of block erasures.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Originally D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21

After D1 D2 D3⊕ D4⊕ D5⊕ D6⊕ D7 D8⊕ D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21
stage ⊕ ⊕ D11⊕ D13⊕ D12⊕ D10⊕ ⊕ D18⊕ ⊕
one D2 D17 D14⊕ D16⊕ D20⊕ D15⊕ D19 D19 D17

D20 D21 D7 D17
After D1 D2 D3⊕ D4⊕ D5⊕ D6⊕ D7 D8⊕ D6 D3 D5 D4 D11 D10 D13 D9 D8 D18 D12 D16 D15
stage ⊕ ⊕ D11⊕ D13⊕ D12⊕ D10⊕ ⊕ D18⊕
two D2 D17 D14⊕ D16⊕ D20⊕ D15⊕ D19 D19

D20 D21 D7 D17
After D2 D17 D20 D21 D7 D1 D19 D14 D6 D3 D5 D4 D11 D10 D13 D9 D8 D18 D12 D16 D15
stage
three

Fig. 3. The data in the n + δ = 22 blocks at different times, using the data-movement algorithm with coding over GF(2).

We present a coding-based solution using at most 2.5n +
1 = O(n) erasures in [4]. We shall prove the benefit of coding
by rigorously proving that when coding is not used, it is neces-
sary for all algorithms to use Ω(n logδ k/ log∗

δ n) erasures in
the worst case.1 We first present an algorithm without coding
that uses at most n�logδ k� + 3n

2 = O(n logδ k) erasures,
which is very close to the proved lower bound. To see how it
works, let us first consider the special case where k = δ.

Algorithm 12. DATA AGGREGATION FOR k = δ

We label the empty blocks Bn+1, Bn+2, . . . , Bn+δ with the
integers 1, 2, . . . , δ. Then, we perform the iteration described
below. During the following iteration, whenever a block la-
belled by an integer i ∈ {1, . . . , δ} becomes full (namely, when
m pages of data have been written into it), we find a block that
is empty at this moment, and give the label i to the empty block.
The full block will no longer be labelled.

Let Q ⊆ {B1, B2, . . . , Bn} denote the set of blocks
whose data have at least two different colors. That
is, for i ∈ {1, . . . , n}, Bi ∈ Q if and only if
|{α(i, 1),α(i, 2), . . . ,α(i, m)}| ≥ 2. The iteration is:

• While Q �= ∅, do:

– Choose a block Bi ∈ Q.
– For j = 1 to m, do: Write the data Di, j to a block

labelled by α(i, j).
– Erase block Bi, and remove Bi from Q.

The above algorithm uses at most n erasures, and when it
ends, for each of the n non-empty blocks, its data have the
same color. (But the color of a block is not necessarily the
same color of its data.) The correctness of the algorithm is
proved in [4]. We now use Algorithm 12 as a building block
to solve the data aggregation problem in Definition 11.

Algorithm 13. DATA AGGREGATION WITHOUT CODING

First, divide the set of k colors, {1, 2, . . . , k}, into δ subsets
S1, S2, . . . , Sδ as evenly as possible. (That is, each Si contains
either �k/δ� or �k/δ� colors.) See every Si as a “super color”

1log∗
δ n is the iterated logrithm of n, which is defined as the number of

times the logrithm function must be iteratively applied before the result is less
than or equal to 1. Namely, log∗

δ n = 1 + log∗
δ (logδ n) for n > δ. Notice

that log∗
δ n grows very slowly with n. Since log∗

δ n is practically a very small
number, this lower bound is very close to Ω(n logδ k).

and use Algorithm 12 to move the data, so that in every non-
empty block, all the data are of the same “super color.” Then,
for every i ∈ [δ], divide Si into δ subsets Si,1, Si,2, . . . , Si,δ as
evenly as possible, and use Algorithm 12 to move the data of
super color Si so that in the end, in every non-empty block, all
the data have their colors belong to the same Si, j. Repeat this
process �logδ k� times, so that in the end, the data in every non-
empty block have the same color. As the last step, we move the
data to their target blocks (that is, blocks of the same color as
the data) by copying the data from block to block.

In the above algorithm, each of the �logδ k� rounds using
Algorithm 12 as a subroutine takes at most n erasures, and
the last step takes at most 3n/2 erasures. So Algorithm 13
uses at most n�logδ k�+ 3n

2 erasures. The following theorem
shows that this is nearly optimal. (For its detailed proof, please
see [4].) The theorem rigorously proves the benefit of coding.

Theorem 14. For m ≥ logδ n/ log∗
δ n, when coding is

not used, no data-aggregation algorithm can use less than
Ω(n logδ k/ log∗

δ n) erasures in the worst case.

The data aggregation problem can be extended to the case
where the final data can be functions of the original data. Due
to the space limitation, we leave the detailed analysis in [4].
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