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Position Modulation Code for Rewriting
Write-Once Memories

Yunnan Wu, Member, IEEE, and Anxiao (Andrew) Jiang, Member, IEEE

Abstract—A write-once memory (wom) is a storage medium
formed by a number of “write-once” bit positions (wits), where
each wit initially is in a “0” state and can be changed to a ““1” state
irreversibly. Examples of write-once memories include SLC flash
memories and optical disks. This paper presents a low complexity
coding scheme for rewriting such write-once memories, which
is applicable to general problem configurations. The proposed
scheme is called the position modulation code, as it uses the positions
of the zero symbols to encode some information. The proposed
technique can achieve code rates higher than state-of-the-art
practical solutions for some configurations. For instance, there is
a position modulation code that can write 56 bits 10 times on 278
wits, achieving rate 2.01. In addition, the position modulation code
is shown to achieve a rate at least half of the optimal rate.

Index Terms—Flash memories, position modulation, write-once
memories.

I. INTRODUCTION

N THEIR pioneering work [20], Rivest and Shamir con-
I sidered the problem of rewriting a “write-once memory”
(wom). A write-once memory consists of a number of “write-
once” cells, where each wit initially is in a “0” state and can
be changed to a “1” state irreversibly. Several types of storage
media follow such a write-once memory model. Examples in-
clude SLC flash memories and optical disks. Rivest and Shamir
[20] demonstrated that it is possible to rewrite such a write-once
memory multiple times, using coding techniques. For example,
using 3 wits, we can write a 2-bit variable twice via a wom-code.
The rate of this wom-code (i.e., capacity per wit) is 2 x 2/3 =
1.33.

In [20], Rivest and Shamir presented a wom-code that has
the best asymptotic rate (as the cardinality of the variable ap-
proaches infinity), for any given number of writes. This result
is done via a counting argument and the scheme is not con-
structive. Rivest and Shamir and others have proposed various
other wom-codes, which have low complexity. However, the
coding rates of existing wom-codes with low complexity are

Manuscript received September 23, 2009; accepted October 29, 2010. Date
of current version May 25, 2011. This work was supported in part by the NSF
CAREER Award 0747415 and the NSF grant ECCS-0802107. This work was
done while Y. Wu was with Microsoft Research, Redmond, WA 98052 USA.

Y. Wu is with Facebook, Inc., Palo Alto, CA 94304 (e-mail: yunnanwu@
alumni.princeton.edu).

A. Jiang is with the Department of Computer Science and Engineering, Texas
A&M University, College Station, TX 77843-3112 USA (e-mail: ajiang@cse.
tamu.edu).

Communicated by H.-A. Loeliger, Associate Editor for Coding Techniques.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2011.2134370

Fig. 1. Two wits are used to implement a symbol that can take four values
{0, a, b, e}. The all-one value is used to represent the “erased” state.

still far from the theoretically achievable coding rates. Thus, the
problem of finding good practical wom-codes remains an open
challenge.

In this paper, we present a low complexity coding scheme,
which we call the position modulation code, for rewriting a
write-once memory. The scheme is built upon a simple yet fun-
damental observation: If we flip & cells out of n binary cells that
are initially zero, there are n-choose-k ways of doing so, which
can represent n-choose-k distinct messages. We call this en-
coding method position modulation. Clearly, position modula-
tion can be directly applied to the first write in write-once mem-
ories, because we start from the all-zero state. Several wom-
codes can be viewed as performing position modulation in the
first write. However, it is not straightforward to apply position
modulation to subsequent writes, because each write flips some
wits and the decoder only sees the overall set of written wits but
not when they are written.

The scheme proposed in this paper performs position modula-
tion to all writes except the last one. Instead of directly applying
position modulation to the wits, we apply position modulation
to symbols that are formed by multiple wits each. For example,
asillustrated in Fig. 1, using every two wits in a group, we obtain
a symbol that can take four values. The all-one value is used to
represent the “erased” state. At the beginning of each write, we
erase all nonzero symbols by setting them to the all-one value.
After this operation, the remaining symbols are all zero and thus
we can apply position modulation.

The rest of the paper is organized as follows. In Section II,
we present a brief overview of existing research on wom coding
and related topics. In Section III, we highlight a simple observa-
tion that encoding and decoding for position modulation can be
implemented with polynomial time complexity. The proposed
position modulation code is then described in Section IV. In
Section V we compare the performance of the position modu-
lation code with existing wom-codes. In Section VI we present
the conclusions.

0018-9448/$26.00 © 2011 IEEE
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II. OVERVIEW OF RELATED STUDIES

We briefly overview the existing studies on wom codes. They
will be referred to with more details later in the paper when we
compare the performance of different codes. Rivest and Shamir
defined wom codes in their pioneering paper [20], in which
they presented a number of individual wom codes (the most
well-known of which is the code for writing two bits twice in
three wits) and some families of wom codes (including the linear
wom codes and the tabular codes). The wom code model was
generalized in [5] by allowing the cell state transitions to be
any acyclic directed graph; in addition, two families of wom
codes for data with alphabet size three and four were shown.
In [18] several individual wom codes were constructed using
projective geometries. In [3] a wom code construction based on
error-correcting codes was presented. As an example, based on
the C[23, 12, 7] Golay code, a wom code for writing 11 bits three
times in 23 wits was shown. More works on wom include [7],
[10], [24], [25], which studied the capacity and error correction
of write-once memories.

WOM is related to the study on defective memory [9], [11],
[15], write unidirectional memory [19], [22], [23], and write
efficient memory [1], [8]. It is also related to the study on
coding for flash memories, where many of the proposed coding
schemes are based on the monotonic transitions of flash cell
states [12], [14]. In particular, the works on rewriting codes for
flash memories extend wom codes [2], [6], [13], [17].

The motivation for this study is to look for a general method
for constructing wom codes that can achieve low encoding/de-
coding complexity and high rates, which can potentially be used
in practice (e.g., for flash memories). As a result, our focus is on
cases where the number of rewrites is reasonably small and the
data size is moderate, instead of asymptotic settings.

III. POSITION MODULATION HAS POLYNOMIAL COMPLEXITY

We use the following notations for wom codes in [20]. A
(v)*/m womcode is a code that can write a variable of cardi-
nality v ¢ times, using n wits. More generally, a (v1,...,v:)/n
womcode is a code that can write a variable of cardinality v; the
first time, a variable of cardinality v, the second time and so on,
using n wits. The ¢-th write is also called the i-th generation.
The rate of the code is

logy(vy ... o)
—

ey

In position modulation, we use a length-n binary vector with
k ones to represent a variable of cardinality (Z) Let U denote
the set of all length-n binary vectors with k£ ones. The most
natural approach is to associate each vector u € U/ with its index
in the lexical sorted list of ¢/. Let

z:uH{o,l,...,<Z>—1} )

be a function that computes the lexical order of a vector u € U.
We now show a simple observation that the encoding and de-
coding functions £(-) and £~1(-) can be implemented efficiently.
It is a particular case of enumerative source coding and has been
studied in [4], [16], [21]. For completeness of the paper, we in-
clude the details here.
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Fig.2. Tllustration of the process of computing the lexical order of the sequence
0101100.

First, consider an example where n = 7 and k& = 3. Fig. 2
illustrates the process of computing the lexical order of the se-
quence 0101100. The idea is to count the number of sequences
that have a lower index. We start with the leftmost 1 and move to
the right. First, if we flip the leftmost 1 to O, then clearly vectors
in U of the form 00 * * * ** are all lexically before 0101100;
there are (g) of such vectors. If we keep the second bit as 0, the
next group of vectors with a lower index than 0101100 is of the
form 0100 * **, There are (g) of such vectors. If we keep the
first two 1’s, the next group of vectors with a lower index than
0101100 is of the form 01010 * *. There are (}) of such vectors.
Therefore, the index of 0101100 is

¢(0101100) = <;> + <;> - G) =15.

More generally, consider a vector u € U that has % one’s at
positions n > 43 > --- > i > 0 (here the bit positions are
labeled as 0 to » — 1 from right to left). We have

é(u)=(2)+<k?1)+---+<i{“). )

Conversely, given £(u), to find u, we determine the bits from
left to right. First, 4; is determined as the largest integer such
that (°}) < £(u). Next, iy is determined as the largest integer
such that (,”2,) < #(u) — (*!). This process can be continued
until all ones have been determined. All the above computation
has time complexity polynomial in n.

IV. POSITION MODULATION CODE
Theorem 1: Given integers vy,...,v; and m > 2, let h;,
1 < ¢ < t be integers satisfying
a) hy>ho>--->h; >0.

b X ()" —1)F > .
c) po ey em )k >y, i=2,. 0 -1
d (2™ - 1)k — 1> v,

Then, there exists a (v, ..., v:)/(m x hi) wom-code.

Proof: We organize the n = mhy wits as k1 groups, where
each group consists of m wits and represents a symbol that can
take 2" values. The state of the storage cells is then described
by a vector £ = [x1, ..., 2y, |, Wwhere each component can take
values from {0,1,...,2™ — 1} (each value corresponds to its
binary representation). Two of the states are special, the zero
state implemented by the all-zero codeword and the erased state
implemented by the all-one codeword.

At the beginning of each write, we erase all nonzero symbols
by setting them to the all-one value. The remaining symbols are
thus all zeros. Using these remaining symbols, we encode the
message by the number of zero symbols, the positions of the
zero symbols and the values of the nonzero symbols.
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We now describe the encoding process in detail. For the first
write, we select O up to h; — hg symbols and write a variable
with value from {1,...,2™ — 1} to each of them. If we write
into k symbols, then the positions of the £ symbols can represent
a variable of cardinality ("!) and the values of these k symbols
can represent a variable of cardinality (2™ — 1)*. Since we can
write 0, . . ., hy —hsy symbols, in total we can represent a variable
of cardinality

hi1—ho h
> ( ,j)(?m — 1), )

k=0

which is at least v; according to condition (b). Hence the first
write can be done.

For the ith write with 1 < 7 < t, first we erase all nonzero
symbols by changing them into the all-one state. If there are
more than h; remaining zero symbols, then we arbitrarily
erase some additional zero symbols so that there are exactly
h; remaining zeros. Then among the h; remaining zero sym-
bols, we pick 1 up to h; — h;41 entries and write a value
from {1,...,2™ — 2} to each of them. Since we can write
1,...,h; — h;41 symbols, in total we can represent a variable
of cardinality

hi—h;yy1 B
> <k> (2" —2)* (5)

k=1

which is at least v; according to condition (c). Hence the +th
write can be done.

The last write is done differently in that position modulation is
not used. First we erase all nonzero symbols and possibly some
additional zero symbols so that there are exactly h; zero sym-
bols. We simply use these h; positions to represent the variable
by setting each position from {0, 1, ..., 2™ — 2}, except that the
all zero codeword is not used. Since (2™ — 1)t — 1 > vy, the
last write can be done.

Decoding is done accordingly. First, the generation number
(i.e., which write) is decoded from the number of zero symbols
ko. If kg > ho, then it is the first write. If ho > kg > hs,
then it is the second write; and so on. If A; > kg, then it is the
last write. Next, the information message is decoded from the
number of zeros, the positions of the zeros and the values of the
nonzero entries (with erased symbols discarded in all but the
first generation). u

Since the encoding and decoding for position modulation can
be done with polynomial complexity (in log vy, ..., logwv;), the
resulting position modulation code has polynomial encoding
and decoding complexity.

A. Determining the Code Parameters

To find the coding parameters, we determine the ¢ numbers
h1, ..., h; in reverse order. First, we choose h; as the smallest
number that satisfies condition d). More specifically, we choose
h: to be

0gy(2™ — 1)
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Next, we choose h;—1 as the smallest number greater than h;
that satisfies condition c); and so on. More specifically, for 1 <
i < t we choose h; to be

hi =hit1 + 6;, @)
b
5i:1mn{5}:(h*2+6>@m-—mkzzq}. ®)

k=1
We choose h; to be the smallest number that satisfies condition
b), i.e.,

hy =hs + 61, )
6
61 = min {5 Z (h2]:‘ 6) (2™ — l)k > } . (10

k=0
Proposition 1: Consider given parameters m, ¢t and v; =
- =wv; = v. Let §; = h; — h;y1. The above process (namely

(6)—(10)) will output an increasing sequence hy, by 1,...,h1
with nondecreasing increments, i.e.,
Op_1 2> 649 > -+ 2> 01. (11)
Proof: From (8), we have
é.
~ (h; b;
( +1k+ )(2’” —2)F > 0. (12)
k=1
Since h; > h;41, this implies that
6.
N (h; + 6;
Z( Z /)(27”—2)’“2@. (13)
k=1
and
6.
N (h; + 6;
(L _]: )(2’" —1)F > 0. (14)
k=0
From (8) and (10) we know that 6;,_1 < 6;. [ |

Example 1: Consider a code that can write 56 bits of data 10
times using 278 wits, where a symbol is formed by m = 2 wits.
The rate of this code is

2010501
139 x 2

In this case, the code parameters are

h1p = 36,
hg =51,
hg =64,
hy =76,
he =88,
hs =99,
hy =110,
hs =120,
ho =130,
hy =139.
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Note from (6)—(10) that if we want to obtain a code that writes
56 bits of data for # > 10 times, then the first 9 numbers in the
above list will remain the same. O

B. Performance Characterization

We next present a performance characterization of the po-
sition modulation code, by comparing it with a performance
bound on womcodes in [20]. The original bound in [20] is for
the (v)!/n case; however, the argument can easily be extended
to the (vq, ..., v¢) /n case, as mentioned in [18]. The following

’ ’

lemma presents the bound for the (vy,...,v;)/n case.

Lemma 1 (Bound on Womcodes [20]): Let w({v1,...,v:))

denote the least n for which a {v1, ..., v;)/n-womcode exists.
Then

w(<v17"'7vt>) > Zt(vl7"'7vt)' (15)
Here Z,(...) is a t-variable function defined recursively as fol-

lows:

Zi(v1y.ooyvp) = Zp1(vay o o) + 6(v1, Ze1(vay oy vp)),s
t>1, (16)
Zy =0, a7
u m+6
£ i >0 b,
6(v,m) = min {5 Zz:% < ; > > 71} (18)

Proof: The proof is by induction on ¢. The case t = 0
is trivial. Now consider any (vi,...,v:)/n womcode for
t > 0. For this code, after the first write, there must
be at least Z;_1(va,...,v;) zeros. (If there are less than
Zi—1(va,...,vs) zeros after the first write, it is not pos-
sible to accommodate the remaining ¢ — 1 writes since
’U)(<’U27 s 7Ut>) > thl(v27 s 7vt>)-

Therefore, the first write can only use codewords with at most
KEn— Zi—1(va, ..., v) ones. Since the first generation needs

to represent a variable of size vy, we must have

> <”> > vy, (19)
im0 \"
From the definition of (v, m), we see that
k2> 6(vi, Ze-1(v2, ..., vp)). (20)
Thus
n>Zi 1(va, .o, ve) +0(v1, Ze1(v2, - v)). (21
Since (21) holds for any (vi,...,v:)/n womcode,
w((v1,...,v1)) > Zp(vy, V)
Theorem 2: Given wvy,...,v; with v; > 2, consider

hi, ..., h determined based on (6)—(10) for m = 2. Then

h1 < Zy(v1,. .. ve) S w((vg,...,0¢)). (22)
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Therefore, the position modulation code achieves a rate that is
at least half the optimal rate.
Proof: With m = 2, we have

he = {L‘Z(“t ha ﬂ (23)
logy 3
hi—1 =hy + 64—1, (24)
hy = hy + 61, (25)
where
. he + 8\ .

8;—1 = min {5 > < tk >2" > v } : (26)

k=1

5

dt—2 = min {6 Z <ht2+ 6) 2k >0, } , @27

k=1

| ® (ha+6

51:min{6 Z(Zk >3k2v1}. (28)

k=0

By expanding the expression of Z;(v1, ..., v:), we have
Zl(’l}t) :(5(’[)15,0) (29)
Za(ve—1,v¢) = Z1(ve) + 6,4 (30)
: (31)
Zt(’l)17...7’l)t) :Zt—1(027-~-7vt)+6i-, (32)
where

81 26 (v, Za () (33)
81—y 2 6 (vima, Za(vio1,v1)) (34)
6/1 S 5(“17Zt71(/u27"'7lut))' (35)

To simplify notations, we use the shorthand notation Zj, to
refer to Zp (vt—g+41, - - ., v¢). We now show via induction over k
that

hi—x41 < Zg. (36)

The case k = 1 follows from the fact that for v; > 1,

logy(ve + 1)

g3 -‘:ht. (37)

8(0r,0) = Tlogy ] > |

Suppose hi—r+1 < Zi. We now show that hy—j < Zgyq.
Note that ¢;_, > 1 and

6;71'»' 5;71»-
) G EEED Dl () ETEIED
k=1 k=0
6;71'»' 5;71»-
S (Z’;jl):a’“ > (ZZTl) > (39)
k=0 k=0
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TABLE I

| [ t=2 ] t=3 ] t=4 T t=5 T t=6 [ t=7 [ t=8 T t=9 [ t=10 ]
Known (26)2/7 (63)3/12 (7)4/7 (11)5/11 (16)6/15 (15>7/15 (15)8/19 <15)9/21 (15)10/24
(v)t/n R =134 R =1.49 R =1.60 R =1.57 R =1.60 R =1.82 R =1.65 R =1.67 R =1.63
codes
Position ([255)2/98 | (2°0)3/124 | (290)3/150 | (290)5/172 | (290)8/106 | (2°0)7/216 | (2°0)5/238 | (2°0)9/258 | (2°0)10/278
modulation R=1.14 R=1.35 R =149 R =1.63 R=171 R=1281 R =1.88 R =195 R =201
code
Since Zk > ht—k+1, Zk + 6£—k _ ht—k+1 > 6115—19' Thus . Rates of various wom-coding schemes
28 F 4+
1 s+t
Zk+6i,k.*ht—k+1 Z 26 +++++++++
k41 X 6 F . +
> )2k >0y (40) e
k 24} L+t
k=1 o
Zp+61_p—hi—ry1 7 22} ++++
k+1 k o +*
> ( . )3 > v CONEE B
k=0 * o
18 F +
Since Zk+1 = Zk + 6;_]‘: — ht—k-l—l + ht—k-l—l» from (26)—(28) 16 } +E B et
we see that B A LR
141 + Position modulation with m=2 and v=2°2
Linear code by Rivest and Shamir
/ L
Otk < Zp + 64_p, — hi—py1, (42) 12 - <35Y(t+1) code by Fiat and Shamir
= N . o Coset code by Cohen et al.
or equivalently, 0 5 10 15 20 25 30 35 40 45 50
t (number of writes)
hi—k < Zk41. 43) Fig. 3. Rates for various wom-coding schemes.
Thus, using induction we can show that by < Z;(vy,...,v:). W

V. PERFORMANCE COMPARISON

In this section we compare the performance of the position
modulation codes with existing wom-codes. For the position
modulation code, there are some cases where setting m = 3
gives slightly better performance than setting m = 2. For
example, to write 56 bits twice, the position modulation code
needs 98 wits with . = 2 and 96 wits with m = 3. However,
setting m 2 generally gives good performance among all
choices of m. In the following, we use m = 2 for the position
modulation code.

Table I gives the performance comparison of position modu-
lation code (we use v = 25%) and known low complexity (v)!/n
codes with the best rates, for ¢ = 2,...,10. The known low
complexity (v)* /n codes with the best rates are given in the top
row of the table. The position modulation codes and their rates
are given in the bottom row of the table.

We now explain the codes in the top row from left to right.
The (26)2 /7 code is presented in [20] and this code is found via
computer search, according to [20]. The (63)3/12 code is from
James B. Saxe’s construction of a (65,81,63)/12 code, which
was mentioned in [20]. There are two constructions of (7)*/7
codes. One is a cyclic womcode constructed by David Leavitt
(mentioned in [20]) and the other is a womcode constructed
from projective geometry by Frans Merkx [18]. The (11)%/11
womcode, designed by M. Beveraggi, is based on Steiner pen-
tagonal systems, according to [3]. There are two constructions
of the (16)%/15 code. One is the linear coset code given in [3]
([3, Prop. 5]). The other is the linear code given in [20]. The

(15)7/15 womcode is also constructed from projective geom-
etry [18]. The next three codes are all obtained by combining
the (15)7 /15 womcode with some other small womcodes, since
there are no known specific designs for ¢ = 8,9, 10 with rates
higher than 1.62. This is done by using two observations given
in [20]. First, by concatenating a (v)!* /n; code and a (v)'2 /ny
code side by side, we can have a (v)* %2 /(n1 +ns) code (Infor-
mation is represented by the modulo-v sum of the values of the
two subcodes). Second, by concatenating a (v;)?/n; code and
a (v2)"/na code side by side, we obtain a (v1 - v2)"/(n1 + n2)
wom-code (Information is represented as the ordered pair of the
two values). We obtain the (15)% /19 code by concatenating the
(15)7/15 code with a (15)! /4 code (simply using the 4 bits to
represent a 15-ary variable). We obtain the (15)°/21 code by
concatenating the (15)7 /15 code with a (15)2/6 code (based on
the (16)2/6 code given in [20]). We obtain the (15)1°/24 code
by concatenating the (15)7 /15 code with a (15)3 /9 code, which
is obtained by concatenating a (5)2/5 code and a (3)?/4 code.
The (5)2/5 code is a cyclic code designed by David Klarner (see
[20]) and the (3)3/4 code is given in [5].

Foreach t € {2,...,10}, the best rate is shown in boldface.
It is seen that the position modulation code offers higher rates
than state-of-the-art solutions for ¢t = 5,6, 8,9, 10.

For larger values of ¢, we compare the position modu-
lation code with three existing general code designs that
produce classes of codes. In [20], Rivest and Shamir pre-
sented a (v)'*t%/%/(v — 1) linear code. The rate of this code
is less than 2 for ¢ < 50. In [5], Fiat and Shamir presented a
(3)t/(t + 1) code that works for arbitrary ¢. The rate of this
code is always less than 1.59. In [3], Cohen et al. presented
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a (2r)2" 42 /(2" — 1) code that works for 7 > 4; according
to the paper, the encoding process is NP-hard. Fig. 3 shows
the rates of these wom-coding schemes, where the position
modulation code is for m = 2 and v = 232, It is seen that the
position modulation code achieves higher rates.

VI. CONCLUSION

We presented a method for constructing wom codes with low
encoding and decoding complexity and high rates, which works
for general problem configurations. The proposed method is
called position modulation code, as it is built upon a simple and
yet fundamental observation, that positions of zeros in a binary
array can be used to encode information. The position modu-
lation code applies position modulation to symbols formed by
multiple cells and performs position modulation in all writes ex-
cept the last one, by using a “soft” erasing operation to reset the
state between writes.

It is proven that the position modulation code achieves a rate
that is at least half of the optimal rate. Furthermore, the pro-
posed position modulation codes is seen to have superior rates
compared to existing wom codes. The low complexity and high
rate of the position modulation code make it a promising candi-
date for practical applications.

In addition, as a family of codes that accommodate general
parameter configurations, the position modulation code can be
readily used in related rewriting schemes. For example, the tra-
jectory code [13] for a generalized rewriting model can use the
position modulation code as a subcode for better performance.
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