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Abstract—We propose variable-level cell, a new data rep-
resentation scheme, for nonvolatile memories (including flash
memories, phase-change memories, etc.). We derive its storage
capacity, and analyze its performance on rewriting data.

I. I NTRODUCTION

For nonvolatile memories (NVMs) – including flash mem-
ories, phase-change memories (PCMs), memristors,etc., –
maximizing the storage capacity is a key challenge. The
existing method is to use multi-level cells (MLCs) of more and
more levels, where a cell ofq discrete levels can storelog2 q
bits [1]. Flash memories with 4 and 8 levels have been used in
products, and MLCs with 16 levels have been demonstrated
in prototypes. For PCMs, cells with 4 or more levels have
been in development. How to maximize the number of levels
in cells is a most important topic for study.

The number of levels that can be programmed into cells is
seriously constrained by the noise in cell programming and by
cell heterogeneity [1]. We explain it with flash memories as an
example, and the concepts can be naturally extended to PCMs
and memristors. A flash memory uses the charge stored in
floating-gate cells to store data, where the amount of charge
in a cell is quantized intoq values to representq discrete
levels. Cell programming – the operation of injecting charge
into cells – is a noisy process, which means that the actual
increase in the cell levels can deviate substantially from the
target value. And due to the block erasure property, – which
means that to remove charge from any cell, a whole block
of about105 cells must be erased together to remove all their
charge, – during the writing procedure, the cell levels are only
allowed to monotonically increase using charge injection. That
makes it infeasible to correct over-injection errors [1]. Beside
cell-programming noise, the difficulty in programming is also
caused by cell heterogeneity, which means that even when the
same voltage is used to program different cells, the increments
in the different cells’ levels can differ substantially, due to
the heterogeneity in cell material and geometry [6]. Since
memories use parallel programming for high write speed, a
common voltage is used to program many cells during a
programming step, which cannot be adjusted for individual
cells [1], [6]. As cell sizes scale down, the cell heterogeneity
will be even more significant [1].

The storage capacity of MLC is limited by the worst-
case performance of cell-programming noise and cell het-

erogeneity [1], [6]. We illustrate it in Fig. 1 (a). Asafety
gap is needed to separate two adjacent levels to prevent
errors after programming. The charge level for an individual
cell has a random distribution due to the cell-programming
noise [1], [6]. The actual value of the charge level varies
from one write to another. Due to cell heterogeneity, the
charge-level distributions of different cells in the same level
shift away from each other, which widens the overall charge-
level distribution of the level [1], [6]. Since MLC uses fixed
levels for storage, it needs to accommodate the worst-case
programming performance: the charge-level range for a level is
set to be sufficiently wide to accommodate not only the worst-
case programming noise for each cell, but also the worst-case
cell heterogeneity. That limits the number of levels in MLC.

In this paper, we introduce a new storage scheme named
variable-level cells (VLC)for maximum storage capacity.
It has two unique properties: the number of levels is not
fixed, and the positions of the levels are chosen adaptively
during programming. More specifically, we program the levels
sequentially from low to high. After leveli is programmed, we
program leveli + 1 such that the gap between the two adjacent
levels is at least the required safety gap. (There are many ways
to differentiate the cells in different levels. For example, we
can require the cells of the same level to have charge levels
within δ from each other, and require cells in different levels
to have charge levels at least∆ away from each other, for
appropriately chosen parametersδ, ∆.) We program as many
levels into the cells as possible until the highest programmed
level reaches the physical limit.

The VLC scheme places the levels as compactly as possible,
and maximizes the number of programmed levels, which is de-
termined by theactual instead of theworst-caseprogramming
performance. It is illustrated in Fig. 1 (b). Note that for a set of
cells programmed in parallel, their heterogeneity is usually not
as significant as the worst-case heterogeneity of all memory
cells, which helps narrow the actual charge-level range for
a level [1]. Furthermore, the actual cell-programming noise
is often not as large as its worst-case value, which further
narrows the actual range of charge levels for the level. The
VLC scheme places leveli + 1 as low as possible based on the
actual position of leveli. The better the actual programming
performance is, the more levels we write into the cells.

The VLC scheme shifts data representation into the stochas-
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Fig. 1. Charge-level distribution of (a) MLC; (b) VLC.

tic regime, because the number of levels actually used is not
determined in advance. New coding schemes are needed for
this new paradigm. In this paper, we derive the storage capacity
of VLC. We also study rewriting codes, which are important
for improving the longevity of flash memories and PCMs [4],
[5], and present bounds for achievable rates.

The rest of the paper is organized as follows. In Section II,
the storage capacity of VLC is derived. In Section III, the
capacity region of data rewriting is studied. In Section IV,
concluding remarks are presented.

II. D ISCRETEMODEL AND CAPACITY OF VLC

In this section, we present a probabilistic model for VLC,
and derive its capacity.

A. Discrete Model for VLC

For a storage scheme, it is key to have a discrete model that
not only enables efficient code designs, but is also robust to
the physical implementation of the scheme. In this paper, we
use the following simple probabilistic model for VLC.

Let q denote the maximum number of levels we can program
into cells, and call theq levels level0, level 1,· · · , levelq− 1.
Let n denote the number of cells, and fori = 1, 2, · · · , n,
denote the level of theith cell by ci ∈ {0, 1, · · · , q − 1}.
Before writing, all cells are at level 0. Let

L = (`1, `2, · · · , `n) ∈ {0, 1, · · · , q− 1}n

denote thetarget levels, which means that fori = 1, · · · , n,
we plan to programci as `i. 1 To program cells to the target

1Since VLC uses the relative positions of charge levels to store data, we
usually require fori = 0, 1, · · · , max1≤ j≤n ` j, at least one cell is assigned
to level i. However whenn → ∞, this constraint has a negligible effect on
the code rate. So when we analyze capacity, this constraint can be neglected.

levels L, we first program level 1 (namely, push some cells
from level 0 to level 1), then program level 2, level 3,· · · , until
we reach a certain leveli such that its charge levels are so close
to the physical limit that we will not be able to program level
i + 1. All the cells that should belong to levels1, 2, · · · , i are
successfully programmed to those levels. The cells that should
belong to levels{i + 1, i + 2, · · · , max1≤ j≤n ` j} are still in
level 0 (together with the cells that should belong to level 0).
So the final cell levels are

Li ,
(
c′1, c′2, · · · , c′n

)
,

where for j = 1, · · · , n, c′j = ` j if 1 ≤ ` j ≤ i, and c′j = 0
otherwise.

For i = 1, 2, · · · , q− 1, let pi denote the probability that
level i can be programmedgiven that levels1, 2, · · · , i − 1
are successfully programmed. (And for convenience, define
pq = 0.) Let T denote the target levels, andS denote the
written levels. So whenT = L ∈ {0, 1, · · · , q − 1}n, for
i = 0, 1, · · · , q− 1, we have

Pr{S = Li} = (1− pi+1)
i

∏
j=1

p j.

We define thecapacity of VLCby

C = lim
n→∞

1
n

max
PT(t)

I(T; S),

wherePT(t) is the probability distribution ofT, and I(T; S)
is the mutual information ofT and S. 2

B. Capacity of VLC

We now derive the capacity of VLC. We first present a
channel model for a single cell. LetX denote the target level
for a cell, and letY denote the actual state of the cell after
writing. Clearly, X ∈ {0, 1, · · · , q− 1}. The levelX can be
successfully programmed with probabilityp1 p2 · · · pX if X ≥
1, and with probabilityp1 p2 · · · pq−1 if X = 0; and if so, we
get Y = X. It is also possible that levelX is not successfully
programmed. Fori = 0, 1, · · · , q− 2, the highest programmed
level will be level i with probability

(1− pi+1)
i

∏
j=1

p j;

and if so, the cells with target levels in

{0, i + 1, i + 2, · · · , q− 1}
will all remain in level 0. In that case, ifX = 0 or i + 1 ≤ X ≤
q− 1, we denote that state of the cell after writing (namely,
Y) by

E{0,i+1,i+2,··· ,q−1}

2Here we view then cells asone symbol for the channel, and normalize
its capacity by the number of cells. The capacity defined this way equals the
expectednumber of bits a cell can store.



and call it apartial erasure, because it is infeasible to tell
which level in {0, i + 1, i + 2, · · · , q− 1} is the target level
of the cell. So we have

Y ∈ {0, 1, · · · , q− 1} ∪ {E{0,1,2,··· ,q−1}, E{0,2,3,··· ,q−1},
· · · , E{0,q−1}}.

We call the channel thepartial-erasure channel. Examples of
the channel forq = 2, 3 are shown in Fig. 2, where the states
in rectangles are the partial erasures. (We can see that when
q = 2, the channel is the same as the binary erasure channel
(BEC) with erasure probability1− p1.)
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Fig. 2. Partial-erasure channel forq levels. (a)q = 2. (b) q = 3.

Let us defineA1, A2, · · · , Aq−1 recursively:

Aq−1 = 2pq−1 ;

and for i = q− 2, q− 3, · · · , 1,

Ai = (1 + Ai+1)
pi .

Example 1. Consider VLC constant-weight codes withq = 5.
We have

A4 = 2p4 ,
A3 = (1 + 2p4)p3 ,
A2 =

(
1 + (1 + 2p4)p3

)p2 ,

A1 =
(

1 +
(
1 + (1 + 2p4)p3

)p2
)p1

.

2

Lemma 2. Let x ∈ [0, 1] andy ∈ [0, 1] be given numbers. Let

µ∗ =
1

1 + 2
y
x

.

Then
maxµ∈[0,1] xH(µ) + y (1−µ)

= xH(µ∗) + y (1−µ∗)
= log2

(
1 + 2

y
x

)x

Proof: Define f (µ) , xH(µ) + y(1−µ). Then

f (µ) = y− 1
ln 2

(xµ ln µ + x(1−µ) ln(1−µ) + yµ ln 2) .

So

f ′(µ) = − 1
ln 2

(
x ln

µ

1−µ
+ y ln 2

)
,

where f ′(µ) is the derivative off (µ). By setting f ′(µ) = 0,
we get

µ =
1

1 + 2
y
x

, µ∗.

And we get

f (µ∗) = log2

(
1 + 2

y
x

)x
.

Lemma 3. The capacity of the partial-erasure channel forq
levels is

log2 A1

bits per cell.

Proof: The capacity of the partial-erasure channel is
maxPX(x) I(X; Y), wherePX(x) is the probability distribution
for X. For i = 2, 3, · · · , q, we defineChi to be a partial-
erasure channel withi levels and the following alternation of
notations:

1) Its i levels – from low to high – are denoted by levels
0, q − i + 1, q − i + 2, · · · , q − 1 (instead of levels
0, 1, · · · , i− 1);

2) The probabilities that the highest programmed level will
be level q − i + 1, level q − i + 2, · · · , level q − 1
arepq−i+1, pq−i+1 pq−i+2, · · · , pq−i+1 pq−i+2 · · · pq−1,
respectively (instead ofp1, p1 p2, · · · , p1 p2 · · · pi−1).

Let X̄i and Ȳi denote the input and output symbols to the
channelChi, respectively. (Clearly, we haveX = X̄q andY =
Ȳq.) We now prove the following claim by induction:

• Claim ♣: For i = 2, 3, · · · , q, we have

max
PX̄i

(x)
I(X̄i ; Ȳi) = log2 Aq−i+1.

First, consider the base casei = 2. The channelCh2 is a
binary erasure channel with erasure probability1− pq−1, and
its capacity ispq−1. We haveAq−1 = 2pq−1 , so log2 Aq−1 =
pq−1. So claim♣ holds for i = 2.

As the inductive step, consideri ≥ 3. We have

X̄i ∈ {0, q− i + 1, q− i + 2, · · · , q− 1}
and

Ȳi ∈ {0, q− i + 1, q− i + 2, · · · , q− 1}∪
{E{0,q−i+1,··· ,q−1}, E{0,q−i+2,··· ,q−1}, · · · , E{0,q−1}}.

For convenience, in the following equation we useP(x) to
denote PX̄i

(x), use P(y) to denotePȲi
(y), use P(x, y) to

denote the joint distributionPX̄i ,Ȳi
(x, y), and useP(y|x) to

denote the conditional distributionPȲi |X̄i
(y|x). Define µ ,

P(x = q− i + 1). We have

I(X̄i ; Ȳi)
= ∑x ∑y P(x, y) log P(x,y)

P(x)P(y)

= ∑x P(x) ∑y P(y|x) log P(y|x)
P(y)



= P(x = q− i + 1)P(y = q− i + 1|x = q− i + 1)
· log P(y=q−i+1|x=q−i+1)

P(y=q−i+1) +
P(x = q− i + 1)P(y = E{0,q−i+1,··· ,q−1}|x = q− i + 1)

· log
P(y=E{0,q−i+1,··· ,q−1}|x=q−i+1)

P(y=E{0,q−i+1,··· ,q−1})

+ ∑x∈{0,q−i+2,··· ,q−1} P(x) ∑y P(y|x) log P(y|x)
P(y)

= µpq−i+1 log
pq−i+1

µpq−i+1
+ µ(1− pq−i+1) log

1−pq−i+1
1−pq−i+1

+

∑x∈{0,q−i+2,··· ,q−1} P(x) ∑y P(y|x) log P(y|x)
P(y)

= pq−i+1µ log 1
µ +

∑x∈{0,q−i+2,··· ,q−1} P(x) ∑y P(y|x) log P(y|x)
P(y)

= pq−i+1µ log 1
µ + P(x 6= q− i + 1)

·∑x∈{0,q−i+2,··· ,q−1} P(x|x 6= q− i + 1)

·[P(y = E{0,q−i+1,··· ,q−1}|x) log
P(y=E{0,q−i+1,··· ,q−1} |x)
P(y=E{0,q−i+1,··· ,q−1})

+ ∑y 6=E{0,q−i+1,··· ,q−1} P(y|x) log P(y|x)
P(y) ]

= pq−i+1µ log 1
µ + (1−µ)

·∑x∈{0,q−i+2,··· ,q−1} P(x|x 6= q− i + 1)
·∑y 6=E{0,q−i+1,··· ,q−1} P(y|x) log P(y|x)

P(y)
= pq−i+1µ log 1

µ + pq−i+1(1−µ)
·∑x∈{0,q−i+2,··· ,q−1} P(x|x 6= q− i + 1)
·∑y 6=E{0,q−i+1,··· ,q−1} P(y|x, y 6= E{0,q−i+1,··· ,q−1})

· log
pq−i+1P(y|x,y 6=E{0,q−i+1,··· ,q−1})

(1−µ)pq−i+1P(y|x 6=q−i+1,y 6=E{0,q−i+1,··· ,q−1})
= pq−i+1µ log 1

µ + pq−i+1(1−µ)
·∑x∈{0,q−i+2,··· ,q−1} P(x|x 6= q− i + 1)
·∑y 6=E{0,q−i+1,··· ,q−1} P(y|x, y 6= E{0,q−i+1,··· ,q−1})
· log 1

1−µ + pq−i+1(1−µ)
·∑x∈{0,q−i+2,··· ,q−1} P(x|x 6= q− i + 1)
·∑y 6=E{0,q−i+1,··· ,q−1} P(y|x, y 6= E{0,q−i+1,··· ,q−1})

· log
P(y|x,y 6=E{0,q−i+1,··· ,q−1})

P(y|x 6=q−i+1,y 6=E{0,q−i+1,··· ,q−1})

By defining B as

B , ∑x∈{0,q−i+2,··· ,q−1} P(x|x 6= q− i + 1)
·∑y 6=E{0,q−i+1,··· ,q−1} P(y|x, y 6= E{0,q−i+1,··· ,q−1})

· log
P(y|x,y 6=E{0,q−i+1,··· ,q−1})

P(y|x 6=q−i+1,y 6=E{0,q−i+1,··· ,q−1})
,

we get

I(X̄i ; Ȳi)
= pq−i+1µ log 1

µ + pq−i+1(1−µ) log 1
1−µ +

pq−i+1(1−µ)B
= pq−i+1 (H(µ) + (1−µ)B)

We see thatB is actually the mutual information between the
input and output symbols of the channelChi−1, namelyB =
I(X̄i−1; Ȳi−1). By the induction assumption, the maximum
value of B is log2 Aq−i+2. So

maxPX̄i
(x) I(X̄i ; Ȳi)

= maxµ∈[0,1] pq−i+1
(

H(µ) + (1−µ) log2 Aq−i+2
)

.

By Lemma 2,

max
µ∈[0,1]

H(µ) + (1−µ) log2 Aq−i+2 = log2
(
1 + Aq−i+2

)
.

So

max
PX̄i

(x)
I(X̄i ; Ȳi) = log2

(
1 + Aq−i+2

)pq−i+1 = log2 Aq−i+1.

So claim♣ is proved. SinceX = X̄q andY = Ȳq, we have

max
PX(x)

I(X; Y) = log2 Aq−q+1 = log2 A1.

That completes the proof.

Theorem 4. The capacity of VLC is

C = log2 A1.

Proof: Let T = (x1, · · · , xn) ∈ {0, 1, · · · , q − 1}n

denote thetarget levelsof then cells, andS = (y1, · · · , yn) ∈
{0, 1, · · · , q − 1, E{0,1,··· ,q−1}, E{0,2,··· ,q−1}, · · · , E{0,q−1}}n

denote thewritten levelsof the n cells. Note that the require-
ment for every level to have at least one cell has a negligible
effect on the capacity, because we can satisfy the requirement
by assigningq auxiliary cellsa0, a1, · · · , aq−1 to theq levels,
where fori = 0, 1, · · · , q− 1, we let auxiliary cellai’s target
level be level i. As n → ∞, the q auxiliary cells do not
affect the code’s rate. So in the following, we can assume
that the set of values thatT can take are exactly the set
{0, 1, · · · , q − 1}n. Namely, every cell’s target level can be
freely chosen from the set{0, 1, · · · , q− 1}. We also assume
the q auxiliary cells exist without loss of generality (w.l.o.g.).

Let h ∈ {0, 1, · · · , q− 1} denote the highest programmed
level. Pr{h = 0} = 1 − p1, and for i = 1, 2, · · · , q − 1,
Pr{h = i} = p1 p2 · · · pi. The value of h can be de-
termined after writing this way:h is the highest written
level of the q auxiliary cells. Note that the random vari-
able h is independent of then target levelsx1, x2, · · · , xn;
and for i = 1, · · · , n, the value of yi is determined by
xi and h. So maxPT(t) I(T; S) = n maxPxi (x) I(xi ; yi) =
n maxPX(x) I(X; Y) = n log2 A1, where X, Y are the input
and output symbols of the partial-erasure channel. Since the
capacity of VLC isC = limn→∞ 1

n maxPT(t) I(T; S) (where
we see every VLC group ofn cells as one symbol for the
channel, and the channel has infinitely many such symbols),
we haveC = log2 A1.

III. C APACITY REGION FORREWRITING DATA IN VLC

In this section, we study codes for rewriting data in VLC,
and bound its achievable rates. There has been extensive study
on rewriting codes for flash memories and PCMs (for both
single-level cells (SLCs) and MLCs) for achieving longer
memory lifetime [4], [5]. In the well known write-once mem-
ory (WOM) model, the cell levels can only increase when data
are rewritten [3]. For flash memories and PCMs, the model
describes the behavior of cells between two global erasure
operations. Since erasures reduce the quality of cells, it is
highly desirable to avoid them. Given the number of rewrites,



T, our objective is to maximize the rates of the code for the
T rewrites, when cell levels can only increase for rewriting.

We study the achievable rates for rewriting in VLC. Note
that unlike MLC, which are deterministic, the highest pro-
grammable level of a VLC group is a random variable. So we
need to define code rates accordingly.

Consider a VLC group ofn cells, whose highest pro-
grammable level is a random variableh ∈ {1, 2, · · · , q− 1}.
(We assumeh ≥ 1 – namelyp1 = 1 – for the convenience of
presentation. The analysis can be extended toh ≥ 0.) Note that
the value ofh remains unknown until levelh is programmed.
To simplify rate analysis, we suppose that there areq auxiliary
cells a0, a1, · · · , aq−1 in the same VLC group, whose target
levels are0, 1, · · · , q − 1, respectively. Fori = 1, · · · , h,
when leveli is programmed, the auxiliary cellai will be raised
to level i and always remain there. Ifh < q− 1, after levelh
is programmed (at which point we find that levelh + 1 cannot
be programmed), we pushah+1, · · · , aq−1 to level h, too. So
having more than one auxiliary cell in a leveli indicatesh = i.
For sufficiently largen, the q auxiliary cells have a negligible
effect on the code rate.

Now considerN VLC groupsG1, G2, · · · , GN , each ofn
cells. (For capacity analysis, we considerN → ∞.) For i =
1, · · · , N, denote the highest programmable level ofGi by

hi ∈ {1, · · · , q− 1},

and denote its cells by

(ci,1, · · · , ci,n) .

Here h1, · · · , hN are i.i.d. random variables, where for1 ≤
i ≤ N and 1 ≤ j ≤ q− 1,

Pr{hi = j} = p1 p2 · · · p j(1− p j+1).

(Note p1 = 1 and pq , 0.) If the target levelof cell ci, j is
`i, j, we will program it to level

min{`i, j, hi}.

Then if hi < q− 1 and thewritten levelof cell ci, j is hi, we
say that the cell is in thepartially-erased state

Ehi ,

since its target level could be any value in{hi , hi + 1, · · · , q−
1}. In addition, for any two vectorsx = (x1, x2, · · · , xk) and
y = (y1, y2, · · · , yk), we say

x ≤ y

if xi ≤ yi for i = 1, · · · , k.

Definition 5. A
(T, V1, V2, · · · , VT)

rewriting code for theN VLC groups consists ofT pairs of
encoding and decoding functions

{( ft, gt)}T
t=1,

with the message index sets

It = {1, 2, · · · , Vt},

the encoding functions

ft : It × {0, 1, · · · , q− 1}Nn → {0, 1, · · · , q− 1}Nn,

and the decoding functions

gt : {0, 1, · · · , q− 1}Nn → It.

Let xNn
0 = (0, 0, · · · , 0) ∈ {0, 1 · · · , q − 1}Nn. Given any

sequence ofT messages

m1 ∈ I1, m2 ∈ I2, · · · , mT ∈ IT ,

for theT rewrites, the target levels for the cells

(c1,1, · · · , c1,n, c2,1, · · · , c2,n, · · · · · · , cN,1, · · · , cN,n)

are

xNn
1 = f1

(
m1, xNn

0

)
,

xNn
2 = f2

(
m2, xNn

1

)
,

...

xNn
T = fT

(
mT , xNn

T−1

)
,

respectively, where

xNn
t−1 ≤ xNn

t

for t = 1, · · · , T. However, while thetarget cell levels
for the t-th rewrite (for t = 1, · · · , T) are xNn

t =
(`1,1, · · · , `1,n, `2,1, · · · , `2,n, · · · · · · , `N,1, · · · , `N,n),
the written cell levels are yNn

t =(
`′1,1, · · · , `′1,n, `′2,1, · · · , `′2,n, · · · · · · , `′N,1, · · · , `′N,n

)
,

where`′i, j = min{`i, j, hi}. For decoding, it is required that for
t = 1, · · · , T, we have

Pr{gt

(
yNn

t

)
= mt} → 1

asN → ∞.
For t = 1, · · · , T, define

Rt =
1

Nn
log2 Vt.

Then(R1, R2, · · · , RT) is called the rate vector of the code.2

We call the closure of the set of all rate vectors thecapacity
region, and denote it byAT. We present its inner/outer bounds.



A. Inner Bound to Capacity Region

We consider asub-channel codefor VLC. Let

c1, c2, · · · , cN

be N cells, one from each of theN VLC groups. (TheNn
cells in the N VLC groups can be partitioned inton such
“sub-channels.”) We define the rewriting code for theN cells
in the same way as in Definition 5 (by lettingn = 1). We
denote its capacity region bỹAT. Clearly, for any givenn,
we haveÃT ⊆ AT.

Let L = {0, 1, · · · , q− 1} denote the set of target levels.
Let E = {E1, E2, · · · , Eq−2} denote the set of partially-erased
states. ThenL∪E are written levels. For two random variables
X, Y taking values inL, we say “X ⇒ Y” if

Pr{X = x, Y = y} = 0

for any 0 ≤ y < x ≤ q − 1. Let random variables
S1, S2, · · · , ST form a Markov chain that takes values inL.
We say

S1 ⇒ S2 ⇒ · · · ⇒ ST

if St−1 ⇒ St for t = 2, 3, · · · , T. For i = 1, 2, · · · , T,
let

(
si,0, si,1, · · · , si,q−1

)
denote the probability distribution

where
si, j = Pr{Si = j}

for j = 0, 1, · · · , q− 1.
Given the random variablesS1, S2, · · · , ST, we defineαi, j

and Bi, j (for i = 1, 2, · · · , T and j = 1, 2, · · · , q − 2) as
follows. Let

αi, j =

(
q−1

∑
k= j

si,k

) (
j

∏
k=2

pk

)
(
1− p j+1

)
.

We defineBi, j to be a random variable taking values in

{ j, j + 1, · · · , q− 1},

where

Pr{Bi, j = k} = si,k/

(
q−1

∑̀
= j

si,`

)

for k = j, j + 1, · · · , q− 1. We now present an inner bound
to ÃT. SinceÃT ⊆ AT, it is also an inner bound toAT.

Theorem 6. DefineDT = {(R1, R2, · · · , RT) ∈ RT | there
exist Markov-chain random variablesS1, S2, · · · , ST taking
values in{0, 1, · · · , q− 1}, such thatS1 ⇒ S2 ⇒ · · · ⇒ ST
and

R1 ≤ H(S1)− ∑q−2
i=1 α1,i H(B1,i),

R2 ≤ H(S2|S1)− ∑q−2
i=1 α2,i H(B2,i),

...

RT ≤ H(ST |ST−1)− ∑q−2
i=1 αT,i H(BT,i).}

Then, we haveDT ⊆ ÃT.

Proof: SupposeS1, S2, · · · , ST are Markov-chain ran-
dom variables that take values in{0, 1, · · · , q− 1}, and that

S1 ⇒ S2 ⇒ · · · ⇒ ST. For any constantε > 0 (which can
be arbitrarily small), we set

V1 = 2N[H(S1)−∑q−2
i=1 α1,i H(B1,i)−2ε],

Vt = 2N[H(St |St−1)−∑q−2
i=1 αt,i H(Bt,i)−2ε], for t = 2, 3, · · · , T.

We will prove that whenN is sufficiently large, there ex-
ists an (T, V1, V2, · · · , VT) rewriting code for theN cells
c1, c2, · · · , cN.

We first consider the caseT = 2. Let TN
S1

denote the vectors
in LN = {0, 1, · · · , q− 1}N of type

(
s1,0, s1,1, · · · , s1,q−1

)
.

That is,

TN
S1

= {(x1, x2, · · · , xN) ∈ LN | for i = 0, 1, · · · , q− 1,
|{ j|1≤ j≤N,x j=i}|

N = s1,i}.

Similarly, let TN
S2

denote the vectors inLN of type
(
s2,0, s2,1, · · · , s2,q−1

)
.

We construct two sets̃TN
S1

and T̃N
S2

using random coding as
follows. From the setTN

S1
, we uniformly randomly select

∣∣∣TN
S1

∣∣∣
2N[∑q−2

i=1 α1,i H(B1,i)+ε]

elements, and denote the selected subset byT̃N
S1

. Similarly,
from the setTN

S2
, we uniformly randomly select

∣∣∣TN
S2

∣∣∣
2N[∑q−2

i=1 α2,i H(B2,i)+ε]

elements, and denote the selected subset byT̃N
S2

.
We first prove the following property:

• Property♣: ∀ x ∈ T̃N
S1

, if we program theN cells

c1, · · · , cN with x as the target levels, lety ∈ (L ∪ E)N

denote their written levels. Then with high probability
(which approaches 1 asN approaches infinity), the vector
y can be correctly decoded tox.

To prove Property♣, consider the channel model for a cell
ci, with its target level

X ∈ L
as the input symbol and its written level

Y ∈ L ∪ E
as the output symbol. We havePr{Y = 0|X = 0} = 1; for
i = 1, 2, · · · , q− 2, we have

Pr{Y = i|X = i} = p2 p3 · · · pi+1

and for j = 1, 2, · · · , i,

Pr{Y = E j|X = i} = p2 p3 · · · p j(1− p j+1);



and we have

Pr{Y = q− 1|X = q− 1} = p2 p3 · · · pq−1

and for j = 1, 2, · · · , q− 2,

Pr{Y = E j|X = q− 1} = p2 p3 · · · p j(1− p j+1).

The channel model forq = 6 is illustrated in Fig. 3.
We can see that ifX has the same distribution as the random

variableS1, then for i = 1, 2, · · · , q− 2,

Pr{Y = Ei} =

(
q−1

∑
j=i

s1, j

) (
i

∏
j=2

p j

)
(1− pi+1) = α1,i ;

also, for i = 1, 2, · · · , q− 2 and j = i, i + 1, · · · , q− 1,

Pr{X = j|Y = Ei} =
s1, j

∑q−1
k=i s1,k

= Pr{B1,i = j}.

For any i ∈ L, if Y = i, then X = i and H(X|Y = i) = 0.
So we have

H(X|Y)
= ∑z∈L∪E Pr{Y = z}H(X|Y = z)
= ∑z∈E Pr{Y = z}H(X|Y = z)
= ∑q−2

i=1 α1,i H(B1,i)

Since

limN→∞
(

log2

∣∣∣T̃N
S1

∣∣∣
)

/N

= limN→∞
(

log2

∣∣∣TN
S1

∣∣∣
)

/N − [∑q−2
i=1 α1,i H(B1,i) +ε]

= H(S1)− ∑q−2
i=1 α1,i H(B1,i)−ε

= H(X)− H(X|Y)−ε

= I(X; Y)−ε

< I(X; Y),

when N → ∞, with probability one we can decodex from
y based on their joint typicality. So Property♣ is true. Using
the same analysis, we get the following property forT̃N

S2
:

• Property♠: ∀ x ∈ T̃N
S2

, if we program theN cells

c1, · · · , cN with x as the target levels, lety ∈ (L ∪ E)N

denote their written levels. Then with high probability
(which approaches 1 asN approaches infinity), the vector
y can be correctly decoded tox.

We now discuss the encoding and decoding of theT = 2
writes. For the first write, we chooseV1 different elements

x1, x2, · · · , xV1 ∈ T̃N
S1

,

and set the encoding function as

f1(i) = xi .

To write datai ∈ I1 = {1, 2, · · · , V1}, we program the cells
with xi as their target levels. Lety ∈ (L ∪ E)N denote the
written levels. We set the decoding functiong1 (y) as follows:
it first recoversxi from y based on joint typicality (which
succeeds with high probability by Property♣), then mapsxi
to i. So the first write succeeds with high probability.

Consider the second write. Let

{F1, F2, · · · , FV2}
be a partition of the set̃TN

S2
. Namely,∪V2

i=1Fi = T̃N
S2

and for
any i 6= j, Fi ∩ Fj = ∅. We first show that the following
property holds:

• Property♦: There exists a partition{F1, F2, · · · , FV2} of
the setT̃N

S2
such that for anyu ∈ T̃N

S1
and anyv ∈ I2 =

{1, 2, · · · , V2}, there exists a vectorx ∈ Fv such that
u ≤ x.

To prove Property♦, we use the method of random coding.
For every z ∈ TN

S2
, associate it with an indexrz that

is uniformly randomly and independently chosen from the
message index setI2 = {1, 2, · · · , V2}. For i = 1, 2, · · · , V2,
define

Fi = {z ∈ T̃N
S2
| rz = i}.

Then{F1, F2, · · · , FV2} form a partition of the set̃TN
S2

.

For any u , (u1, u2, · · · , uN) ∈ TN
S1

, define the set of
conditional typical sequencesTN

S2 |S1
(u) as

TN
S2 |S1

(u) = { (v1, v2, · · · , vN) ∈ LN | ∀ (a, b) ∈ L2,
|{i|1≤i≤N,ui=a,vi=b}|

N = Pr{S1 = a, S2 = b}},

and defineG(u) as

G(u) = {v ∈ TN
S2
| u ≤ v}.

SinceS1 ⇒ S2, we haveTN
S2 |S1

(u) ⊆ G(u). By the property
of typical sequences [2], [3], we have

|G(u)| ≥
∣∣∣TN

S2|S1
(u)

∣∣∣ ≥ (N + 1)−q2
2NH(S2 |S1).

For anyv ∈ I2 = {1, 2, · · · , V2} and u ∈ T̃N
S1

, we get

Pr{Fv ∩ G(u) = ∅}
= Pr{for every z ∈ G(u), either rz 6= v or v /∈ T̃N

S2
}

=

(
1− 1

V2 ·2N[∑
q−2
i=1 α2,i H(B2,i)+ε]

)|G(u)|

≤ exp{− |G(u)|
V2 ·2N[∑

q−2
i=1 α2,i H(B2,i)+ε]

}

≤ exp{− (N+1)−q2
2NH(S2 |S1)

2N[H(S2 |S1)−∑
q−2
i=1 α2,i H(B2,i)−2ε]+N[∑

q−2
i=1 α2,i H(B2,i)+ε]

}

= exp{− (N+1)−q2
2NH(S2 |S1)

2N[H(S2 |S1)−ε] }
= exp{−(N + 1)−q2

2Nε}
By the union bound, we get

Pr{∃v ∈ I2 and u ∈ T̃N
S1

such thatFv ∩ G(u) = ∅}
≤ V2 ·

∣∣∣T̃N
S1

∣∣∣ · exp{−(N + 1)−q2
2Nε}

≤ q2N · exp{−(N + 1)−q2
2Nε}

→ 0 as N → ∞.

This implies that Property♦ is true.
We now describe the encoding and decoding functions of

the second write. Let{F1, F2, · · · , FV2} be a partition of the
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Fig. 3. Channel model forq = 6 levels, withX, Y as input and output symbols, respectively. Here the probabilityPr{Y = j|X = i} is labelled beside the
symbol j for Y.)

set T̃N
S2

that has the property described in Property♦. For any
u ∈ T̃N

S1
and anyv ∈ I2 = {1, 2, · · · , V2}, there exists a

vectorxv(u) ∈ Fv such thatu ≤ xv(u). We set the encoding
function f2(v, u′) as follows: given the written levelsu′ of
the first write, it first recovers the target levelsu of the first
write (which succeeds with high probability by Property♣),
then setsf2(v, u′) = xv(u). When the target cell levels of
the first write areu, to write datav ∈ I2 in the second write,
we program the cells withxv(u) as their target levels. Let
y ∈ (L ∪ E)N denote the written levels. We set the decoding
function g2 (y) as follows: it first recoversxv(u) from y
based on joint typicality (which succeeds with high probability
by Property♠), then mapsxv(u) to v. So the second write
succeeds with high probability.

The above proof forT = 2 can be easily generalized to the
proof for generalT. The encoding and decoding functions for
the tth write (for t = 3, 4, · · · , T) can be defined in the same
way as for the second write. So we get the conclusion.

Note that if p2 = p3 = · · · = pq−1 = 1 (namely,
every cell can be programmed to the highest levelq −
1 with guarantee), we getαi, j = 0 for all i, j. Con-
sequently, the set of achievable rates presented in the
above theorem,DT, becomesDT = {(R1, R2, · · · , RT) ∈
RT | there exist Markov-chain random variablesS1, S2, · · · ,
ST , such thatS1 ⇒ S2 ⇒ · · · ⇒ ST and R1 ≤
H(S1), R2 ≤ H(S2|S1), · · · , RT ≤ H(ST |ST−1)}, which
is exactly the capacity region of MLC withq levels [3].

B. Outer Bound to Capacity Region

To derive an outer bound to the capacity regionAT,
we consider the rewriting code as defined in Definition 5,
but with an additional property: the highest reachable levels
h1, h2, · · · , hN for the N VLC groups are known in advance.
Thus the encoding and decoding functions can use that infor-
mation. LetA∗T denote its capacity region. Clearly,A∗T ⊇ AT,
so it is an outer bound toAT.

Theorem 7. DefineGT = {(R1, R2, · · · , RT) ∈ RT | for i =
1, 2, · · · , q− 1, there exist

(r1,i , r2,i , · · · , rT,i) ∈ RT

and Markov-chain random variablesS1,i , S2,i , · · · , ST,i taking
values in{0, 1, · · · , i}, such that

S1,i ⇒ S2,i ⇒ · · · ⇒ ST,i ,

r1,i ≤ H(S1,i),
r2,i ≤ H(S2,i|S1,i),

...
rT,i ≤ H(ST,i|ST−1,i),

and for j = 1, 2, · · · , T,

R j =
q−1

∑
k=1

p1 p2 · · · pk(1− pk+1)r j,k . }

Let CT be the closed set generated byGT. Then, we have

A∗T = CT .

Proof: For i = 1, 2, · · · , q− 1, let Qi be the indices of
the VLC groups whose highest reachable levels are all level
i. That is,

Qi = { j ∈ {1, 2, · · · , N} | h j = i} ⊆ {1, 2, · · · , N}.

Also, define

γi = p1 p2 · · · pi(1− pi+1).

(As before,pq , 0.) Clearly,

|Qi|
N

→ γi

with high probability asN → ∞.
We first prove that all rate vectors(R1, R2, · · · , RT) in GT

are achievable rate vectors. It is known that for WOM ofi + 1
levels [3], the rate vector

(r1,i , r2,i , · · · , rT,i)

is achievable forT writes if and only if there exist Markov-
chain random variablesS1,i , S2,i , · · · , ST,i taking values in
{0, 1, · · · , i} such that

S1,i ⇒ S2,i ⇒ · · · ⇒ ST,i

and
r1,i ≤ H(S1,i),



r2,i ≤ H(S2,i|S1,i),

· · · ,

rT,i ≤ H(ST,i|ST−1,i).

So for i = 1, 2, · · · , q− 1, we can use the cells in the VLC
groups indexed byQi to achieveT writes with the rate vector
(r1,i , r2,i , · · · , rT,i). Together, theN VLC groups achieveT
writes with the rate vector(R1, R2, · · · , RT).

Next, we prove the converse. Given a(T, V1, V2, · · · , VT)
code, we need to show that

(
1

Nn
log2 V1,

1
Nn

log2 V2, · · · ,
1

Nn
log2 VT

)
∈ GT .

We use the same technique of proof as in [3] (Theorem 3.1).
For t = 1, 2, · · · , T, let ft, gt denote the encoding and
decoding functions of the code for thet-th write, respectively.

Let W1, W2, · · · , WT be independent random variables that
are uniformly distributed over the message index setIt =
{1, 2, · · · , Vt} (for t = 1, 2, · · · , T), respectively. LetYNn

0 ,
{0, 0, · · · , 0} denote the all-zero vector of lengthNn. Then
for t = 1, 2, · · · , T, define

YNn
t = (Yt,1, Yt,2, · · · , Yt,Nn)

as
YNn

t = ft

(
Wt, YNn

t−1

)
.

That is,Yn
t denotes the cell levels after thet-th write. It is not

hard to see that

H(Wt) = H(YNn
t |YNn

t−1)

for t = 1, 2, · · · , T.
For i = 1, 2, · · · , q− 1, let

Q̃i ⊆ {1, 2, · · · , Nn}
denote the indices of the cells whose highest reachable levels
are all i, and let Li be an independent random variable that
is uniformly distributed over the index set̃Qi. (Specifically,
the indices for cells in VLC groupG1 are{1, 2, · · · , n}, the
indices for cells inG2 are{n + 1, n + 2, · · · , 2n}, and so on.)
Let L be an independent random variable that is uniformly
distributed over the index set{1, 2, · · · , Nn}. We get

1
Nn log2 Vt = 1

Nn H(Wt) = 1
Nn H(YNn

t |YNn
t−1)

≤ 1
Nn ∑Nn

i=1 H(Yt,i|Yt−1,i)
= ∑Nn

i=1 Pr{L = i}H(Yt,L|Yt−1,L, L = i)
= ∑q−1

i=1 γi ∑ j∈Q̃i
Pr{L = j|L ∈ Q̃i}H(Yt,L|Yt−1,L, L = j)

= ∑q−1
i=1 γi H(Yt,Li |Yt−1,Li , Li)

≤ ∑q−1
i=1 γi H(Yt,Li |Yt−1,Li )

For i = 1, 2, · · · , q − 1, define a set of new random
variables S1,i , S2,i , · · · , ST,i taking values in{0, 1, · · · , i},
whose joint probability distribution is defined as

Pr{S1,i = j1, S2,i = j2, · · · , ST,i = jT}
= Pr{Y1,Li = j1}Pr{Y2,Li = j2|Y1,Li = j1} · · ·

Pr{YT,Li = jT |YT−1,Li = jT−1}.

Define S0,i , 0. It is not hard to see thatS1,i , S2,i , · · · , ST,i
form a Markov chain, and for anyt ∈ {1, 2, · · · , T} the
random variables(St−1,i , St,i) and

(
Yt−1,Li , Yt,Li

)
have the

same probability distribution. SoH(S1,i) = H(Y1,Li ) and for
t = 2, 3, · · · , T,

H(St,i|St−1,i) = H(Yt,Li |Yt−1,Li ).

SinceYt−1,Li ⇒ Yt,Li for t = 2, 3, · · · , T, we haveS1,i ⇒
S2,i ⇒ · · · ⇒ ST,i. Therefore fort = 1, 2, · · · , T,

1
Nn

log2 Vt ≤
q−1

∑
i=1

γi H(St,i|St−1,i).

So we have(
1

Nn
log2 V1,

1
Nn

log2 V2, · · · ,
1

Nn
log2 VT

)
∈ GT .

That completes the converse part of the proof. SoA∗T = CT.

Let

MT , max{
T

∑
t=1

Rt| (R1, R2, · · · , RT) ∈ AT}

denote the maximum total rate of all rewriting codes for
VLC. It is known that for WOM (i.e., MLC) ofi + 1 levels,
the maximum total rate overT writes is log2 (T+i

i ) [3]. By
Theorem 7, we get

MT ≤ max{∑T
t=1 Rt| (R1, R2, · · · , RT) ∈ A∗T}

= ∑q−1
k=1 p1 p2 · · · pk(1− pk+1) log2 (T+k

k ).
IV. CONCLUSION

This paper introduces a new data representation scheme,
variable-level cells, for nonvolatile memories. By adaptively
choosing the number and positions of levels in cells, higher
storage rates can be achieved. The storage capacity of the VLC
scheme is proved. Coding for rewriting data is also analyzed
for the VLC scheme, and both inner and outer bounds to the
capacity region of rewriting are presented.
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