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Abstract—We propose variable-level cell, a new data rep- erogeneity [1], [6]. We illustrate it in Fig. 1 (a). Aafety
resentation scheme, for nonvolatile memories (including flash gap is needed to separate two adjacent levels to prevent
memories, phase-change memories, efc.). We derive its storag&srors after programming. The charge level for an individual
capacity, and analyze its performance on rewriting data. o .

cell has a random distribution due to the cell-programming
|. INTRODUCTION noise [1], [6]. The actual value of the charge level varies

For nonvolatile memories (NVMs) — including flash memfrom one write to another. Due to cell heterogeneity, the
ories, phase-change memories (PCMs), memristets, — charge-level distributions of different cells in the same level
maximizing the storage capacity is a key challenge. Tishift away from each other, which widens the overall charge-
existing method is to use multi-level cells (MLCs) of more antevel distribution of the level [1], [6]. Since MLC uses fixed
more levels, where a cell of discrete levels can stoleg, g levels for storage, it needs to accommodate the worst-case
bits [1]. Flash memories with 4 and 8 levels have been usedfrogramming performance: the charge-level range for a level is
products, and MLCs with 16 levels have been demonstrateet to be sufficiently wide to accommodate not only the worst-
in prototypes. For PCMs, cells with 4 or more levels havease programming noise for each cell, but also the worst-case
been in development. How to maximize the number of levetll heterogeneity. That limits the number of levels in MLC.
in cells is a most important topic for study. In this paper, we introduce a new storage scheme named

The number of levels that can be programmed into cells sriable-level cells (VLC)for maximum storage capacity.
seriously constrained by the noise in cell programming and Byhas two unique properties: the number of levels is not
cell heterogeneity [1]. We explain it with flash memories as dixed, and the positions of the levels are chosen adaptively
example, and the concepts can be naturally extended to PQiMising programming. More specifically, we program the levels
and memristors. A flash memory uses the charge storedsgguentially from low to high. After levelis programmed, we
floating-gate cells to store data, where the amount of changegram level + 1 such that the gap between the two adjacent
in a cell is quantized intg; values to represenj discrete levels is at least the required safety gap. (There are many ways
levels. Cell programming — the operation of injecting charge differentiate the cells in different levels. For example, we
into cells — is a noisy process, which means that the actwan require the cells of the same level to have charge levels
increase in the cell levels can deviate substantially from tléthin 6 from each other, and require cells in different levels
target value. And due to the block erasure property, — whith have charge levels at leadt away from each other, for
means that to remove charge from any cell, a whole bloappropriately chosen parameteysA.) We program as many
of about10° cells must be erased together to remove all théievels into the cells as possible until the highest programmed
charge, — during the writing procedure, the cell levels are onligvel reaches the physical limit.
allowed to monotonically increase using charge injection. That The VLC scheme places the levels as compactly as possible,
makes it infeasible to correct over-injection errors [1]. Besidend maximizes the number of programmed levels, which is de-
cell-programming noise, the difficulty in programming is alstermined by theactualinstead of thevorst-casgprogramming
caused by cell heterogeneity, which means that even when pregformance. It is illustrated in Fig. 1 (b). Note that for a set of
same voltage is used to program different cells, the incremengdls programmed in parallel, their heterogeneity is usually not
in the different cells’ levels can differ substantially, due t@s significant as the worst-case heterogeneity of all memory
the heterogeneity in cell material and geometry [6]. Sinazells, which helps narrow the actual charge-level range for
memories use parallel programming for high write speed,aalevel [1]. Furthermore, the actual cell-programming noise
common voltage is used to program many cells during i& often not as large as its worst-case value, which further
programming step, which cannot be adjusted for individuakrrows the actual range of charge levels for the level. The
cells [1], [6]. As cell sizes scale down, the cell heterogeneilyLC scheme places levéh-1 as low as possible based on the
will be even more significant [1]. actual position of levei. The better the actual programming

The storage capacity of MLC is limited by the worstperformance is, the more levels we write into the cells.
case performance of cell-programming noise and cell het-The VLC scheme shifts data representation into the stochas-



(a) MLC

level i level i+1 levels L, we first program level 1 (namely, push some cells
overall from level O to level 1), then program level 2, level 3; , until
gh?f%et'eve' we reach a certain levékuch that its charge levels are so close
Istripution . . . .
i the to the physical limit that we will not be able to program level

worst case i+ 1. All the cells that should belong to levels2, - - - ,i are

successfully programmed to those levels. The cells that should
. o belong to levels{i +1,i +2,--- ,Maxi<j<y Kj} are still in
charge-level safety gap cenieves level O (together with the cells that should belong to level 0).

distribution of

an indvidual cell So the final cell levels are

LZé (C{I/Cé/"' /C;f[)/

(b)vLC actual maximum actual miminum
charge level of charge level of . , . . ,
level i level i+1 overall where fOf] =1,---,n,c. = g if 1 < 0 <1, andc. =0
charge-level . ] J J ]
distribution otherwise.
safety gap /;’;:*;?ng,‘f' Fori=1,2,---,q9—1, let p; denote the probability that
level i can be programmediven that levels1,2,--- ,i —1
are successfully programmed. (And for convenience, define
' leveli | levelity | celllevels ps = 0.) Let T denote the target levels, arldenote the
ol et written levels. So whenT' = L € {0,1,---,9 — 1}", for
range range i=0,1,--- ,q—l, we have

Fig. 1. Charge-level distribution of (a) MLC; (b) VLC. i
Pr{s =L} = (=put) [] 7
]:

tic regime, because the number of levels actually used is noWe define thecapacity of VLChy
determined in advance. New coding schemes are needed for 1
this new paradigm. In this paper, we derive the storage capacity C = lim —maxI(T;S),
of VLC. We also study rewriting codes, which are important oo M Pr(t)
for improving the longevity of flash memories and PCMs [41\NherePT( t) is the probability distribution off, and I(T; S)
[5], and present bounds for achievable rates. is the mutual information of and S. 2
The rest of the paper is organized as follows. In Section II,
the storage capacity of VLC is derived. In Section lll, thg cCapacity of VLC
capacity region of data rewriting is studied. In Section 1V,

concluding remarks are presented. We now derive the capacity of VLC. We first present a

channel model for a single cell. L&t denote the target level

Il. DISCRETEMODEL AND CAPACITY OF VLC for a cell, and letY denote the actual state of the cell after
In this section, we present a probabilistic model for vLCwriting. Clearly, X € {0,1,---,q —1}. The levelX can be
and derive its capacity. successfully programmed with probabilityp, - - - px if X >
) 1, and with probabilitypy p; - - - p;—1 if X = 0; and if so, we
A. Discrete Model for VLC getY = X. It is also possible that leveX is not successfully

For a storage scheme, it is key to have a discrete model thabgrammed. For= 0,1, - - - ,q — 2, the highest programmed
not only enables efficient code designs, but is also robustlewel will be leveli with probability

the physical implementation of the scheme. In this paper, we ;

use the following simple probabilistic model for VLC. (1— pin I—l
Let g denote the maximum number of levels we can program ol =1
into cells, and call thg levels level0, level 1,- - -, levelg — 1.

Let n denote the number of cells, and for= 1,2,---,n, and if so, the cells with target levels in
denote the level of théth cell by ¢; € {0,1,---,9 —1}. ) .
Before writing, all cells are at level 0. Let {0i+1i+2,,q-1}

L=(l,0, - £y)€{0,1,-- ,qg—1}" will all remaininlevel 0. Inthatcase, X = 0ori+1 < X <
g — 1, we denote that state of the cell after writing (namely,
denote thearget levels which means that fof = 1,--- , n, Y) by
we plan to prograne; as/;. 1 To program cells to the target
P prograng; as+: prog g Efoiv1,i42,- 9-1)
1Since VLC uses the relative positions of charge levels to store data, we
usually require fori = 0,1,--- ,max;<j<, ¢;, at least one cell is assigned 2Here we view then cells asone symbol for the channel, and normalize
to level i. However whermm — oo, this constraint has a negligible effect onits capacity by the number of cells. The capacity defined this way equals the
the code rate. So when we analyze capacity, this constraint can be negleaggectechumber of bits a cell can store.



and call it apartial erasure because it is infeasible to tellwhere f/(u) is the derivative off (1). By settingf'(u) = 0,
which level in{0,i+1,i+2,---,q— 1} is the target level we get

of the cell. So we have [y I & "
= ;=
Ye {01, ,9-1 U{Ef1,2.4-1} E{023, 4-1}/ 1+2%
e IE{O,qfl}}‘ And we get
¥\ X
We call the channel thpartial-erasure channelExamples of f(u*) =log, (1 + 2%) )

the channel fog = 2,3 are shown in Fig. 2, where the states

in rectangles are the partial erasures. (We can see that when =
q = 2, the channel is the same as the binary erasure channel
(BEC) with erasure probability — p;.) Lemma 3. The capacity of the partial-erasure channel for
levels is
log, A1
bits per cell.

Proof: The capacity of the partial-erasure channel is
maxp, () 1(X;Y), wherePx(x) is the probability distribution
for X. Fori = 2,3,---,q, we defineCh; to be a partial-
erasure channel withlevels and the following alternation of
notations:

1) Its i levels — from low to high — are denoted by levels
0,g—i+1q9g—1i+2,---,9—1 (instead of levels
Fig. 2. Partial-erasure channel fpdevels. (a)g = 2. (b) g = 3. 2) The probabilities that the highest programmed level will
be levelg —i+ 1, levelg—i+2, ---, level g — 1
Let us defineA;, A, - - -, Ag—1 recursively: arepg_it1, Py—i+1Pg—i+2 """ » Pq—i+1Pg—i+2 " Pg—1,
A respectively (instead of1, p1p2, -+, pip2 - Pi—1)-
’ g1 Let X; and Y; denote the input and output symbols to the
and fori=g—-2,9-3,---,1, channelCh;, respectively. (Clearly, we havé = X, andY =
A= 1+ A \7D) We.now prove the following claim by induction:
o Claimé: Fori=2,3,---,4, we have

(O

() 0=2

— 2!’471’-

Example 1. Consider VLC constant-weight codes with= 5. o=
G max [(X;;Y;) =log, Ay i1

We have Py (%)
A4 = 2}74, . . .
Az = (1+2P4)P3, First, consider the base case= 2. The channelCh; is a
A, = (1 + (14 2p4)P3)P2 binary erasure channel with erasure probability p,_1, and
’ i ity ispg_1. _1 =211, solog, A, 1 =
B p3yp2) Pl its capacity ISpg—1 We haveA, = 2P9-1, g Ag-1
Ay = (1 +(1+(1+2m)P) 2) : pg—1. So claimé& holds fori = 2.
O As the inductive step, considér> 3. We have
Lemma 2. Letx € [0,1] andy € [0, 1] be given numbers. Let Xie{0g-i+lg—i+t2,---,q-1}
= 1 and
14 2% Yie {0,q—i+1,g—i+2,---,q-1}U
Then {E0,g=i+1, -1} E{o.g—it2,- q-1}, "+ Eqo,g-1} }-
maxe(o,1) XH () +y (1 —p) , , _ )
= xH(u*)+y(1—pu) For convenience, in the following equation we uBgx) to
~ 1o (1+2%) denote Pg (x), use P(y) to denotePy (y), use P(x,y) to
- % ' denote the joint distributiorPy, y.(x,y), and useP(y|x) to
Proof: Define (1) £ xH(p) +y(1 — p1). Then denote the conditional distributiofy, 5 (y|x). Define u £
1 P(x =q—i+1). We have
f(w) =y = 3 (epInp +x(1 = @) In(1 — u) + yrin2). (% V)
P(x,
So = T3y Pvy)1og sy

! _ 1 H X
f(“)—*m (xlnl_Heran), = EXP(x)ZyP(y|x)log%L)



= Plx=gq—i+1)P(y=gq—i+1llx=q—i+1)

-log P(y=q—i+1|x=q— z+1)+

By Lemma 2,

max H(u)+ (1-—

max. u)log, Ay iy =log, (14 Ay_ito).

max I(X; Y;) = log, (1+ Ag_i12)""*! =log, Ay_is1.

P(y q—i+1)
P(x=q—i+1)P(y=Eoq-is1,..4-13lx=9—-1+1) So
1o P(y:E{O/q—Hl - l}‘x q—i+1)

& P(y=E{0,g—it1,-4-1})

+ Sxe{og-it2, g-1) P(x) 3y P(y|x)log PIE(V")‘)
= Hpg-it1log uq - "’ﬂ(l_Pq 1+1)10g1527:i
Yre{0g—i+2,-q-1} P(%) Xy P(y[x) log IS(W)‘)

= Pq—i+1u10gﬁ+
S xe{0,g—i+2,- -1} P(x) Ty P(y[x) log Plg(y;)d

= Pq—i+1#10g% +P(x#qg—i+1)
“Yxef0g-it2 g1y POxlx # g —i+1)

- P(y=E{04-it1,- q-1}1%)
'[P(y— E{O,qu#l - 1}|x) log P(y= E{qu i+1, qqfl})

P(y|x
T 2y#E(0g 41,001} P(ylx)log ((y|))]

= pg-iviilogy +(1— )
’ ZXG{O,qfiJrZ,---,q 1} (x|x # g—i+ 1)
.Zy%E{O,q—iJrl,m'q,H P(y|x)log IS(L))
= pgipiklogy +pgoin1(1—p)
: ZXG{O,qu#Z,n-,qfl} P(x|x # q— i+ 1)
’ Ey#E{o,qu,m,gil} P(y|x’ Y 7& E{O,q7i+1,---,q71})
. log F’q—iﬂP(y‘x/y#‘E{o,qu,m,q,l})
(=w)pg- i1 Py AG—i+1Yy#Eg-is1,.. g-1})
= pg-ipiklogy +pgoiv1(1—p)
’ 2xe{0,q#+2,~--,q71} P(x|x # g—i+ 1)
) z.‘/?éE{o,qf,'H,..,,q,l} P(y|x/ Yy 7é E{O,q—i+1,...,q,1})
log = + py-it1(1—p)
2 xe{0,g—it2, q-1} P(x|x #q—i+1)
“2y#E{0 i1, 0 1) P(ylx,y # Ef04-it1,.-
log P(y|x/.1'/7éE{0,q—i+1,---,q—l})
P(y\X#ﬂ—l+11y#E{o,q,,~+1,,.,,H})

,q—l})

By defining B as

P(x|x #g—i+1)
P(y[x,y # Eqoq-it1,

A
B= Yic{og-it2,.q-1}

"2y FE (g i1, 1)
P(y|xy#E{0,g—it1, q-1})

,q—l})

+log P(ylx#q—i+1y#E(oq i1, 4-1})"
we get
(X Yq) :
= Pg- z+1H10gu+Pq i+1(1— )logli
Pq— i+1(1—p)B

= pgoir1 (H(n) + (1 —u)B)

Py, (%)

So claimé is proved. SinceX = Xq andY = Yq, we have

max [(X;Y) = log, A; 441 = log, A1.
Px(x)
That completes the proof. [ ]

Theorem 4. The capacity of VLC is
C =log, A;.

Proof: Let T = (x1,---,x,) € {0,1,---,9—1}"
denote thearget levelof then cells, andS = (y1,- - ,yu) €
{0,1,---,9—1LEqq1,.4-13Efo2,. 413, +Efoq-11 "
denote thewritten levelsof the n cells. Note that the require-
ment for every level to have at least one cell has a negligible
effect on the capacity, because we can satisfy the requirement
by assigning; auxiliary cellsag, ay, - - - , 4,1 to theq levels,
where fori =0,1,---,9— 1, we let auxiliary cella;’s target
level be leveli. As n — oo, the g auxiliary cells do not
affect the code’s rate. So in the following, we can assume
that the set of values thal can take are exactly the set
{0,1,---,q — 1}". Namely, every cell’s target level can be
freely chosen from the s¢0,1,---,4—1}. We also assume
the g auxiliary cells exist without loss of generality (w.l.0.g.).

Leth € {0,1,---,9 — 1} denote the highest programmed
level. Pr{h = 0} = 1—pq, and fori = 1,2,---,9—1
Pr{h = i} = pipz---p;. The value ofh can be de-
termined after writing this way# is the highest written
level of the g auxiliary cells. Note that the random vari-
able i is independent of the: target levelsxy, xp, - - -, xy;
and fori = 1,--.,n, the value ofy; is determined by
x; and h. So maxp,y I(T;S) = nmaxp, (x) I(x;;y) =
nmaxp, ) [(X;Y) = nlog, A1, where X,Y are the input
and output symbols of the partial-erasure channel. Since the
capacity of VLC isC = limy, .o 3 maxp, ;) I(T; S) (Where
we see every VLC group ofi cells as one symbol for the
channel, and the channel has infinitely many such symbols),
we haveC = log, Aj. u

IIl. CAPACITY REGION FORREWRITING DATA IN VLC

In this section, we study codes for rewriting data in VLC,
and bound its achievable rates. There has been extensive study
on rewriting codes for flash memories and PCMs (for both

We see thaB is actually the mutual information between thesingle-level cells (SLCs) and MLCs) for achieving longer

input and output symbols of the chanr@&t;_,, namelyB =
1). By the induction assumption, the maximunory (WOM) model, the cell levels can only increase when data

I(Xi_1; Y-
value of B is log, A; ;2. SO
maXpy (x) I(Xi; Y;)

= MmaXue(o,1) Pg—i+1 (H(w) + (1 - n)log, Aqfi+2) .

memory lifetime [4], [5]. In the well known write-once mem-

are rewritten [3]. For flash memories and PCMs, the model
describes the behavior of cells between two global erasure
operations. Since erasures reduce the quality of cells, it is
highly desirable to avoid them. Given the number of rewrites,



T, our objective is to maximize the rates of the code for thaith the message index sets
T rewrites, when cell levels can only increase for rewriting.
We study the achievable rates for rewriting in VLC. Note L ={1,2---,V},
that unlike MLC, which are deterministic, the highest pro-
grammable level of a VLC group is a random variable. So wi§e encoding functions
need to define code rates accordingly.

Consider a VLC group ofr cells, whose highest pro-  fr: I x{0,1,---,g—1}"" —{0,1,--- ,q— 1}N",
grammable level is a random varialiles {1,2,---,q9—1}.
(We assumé: > 1 — namelyp; = 1 — for the convenience of and the decoding functions
presentation. The analysis can be extendéd*o0.) Note that
the value ofk remains unknown until level is programmed. g :{0,1,---,g—13N" — I
To simplify rate analysis, we suppose that theregaexiliary )
cells ag, a1, -+ ,a_1 i the same VLC group, whose target-€txp" = (0,0,---,0) € {0,1---,q9 —1}"". Given any
levels are0,1,---,q — 1, respectively. Fori = 1,---,h, Sequence df messages
when leveli is programmed, the auxiliary cel} will be raised
to leveli and always remain there. i < g — 1, after levelh my € hymy € I, -+ my € Ir,

is programmed (at which point we find that level- 1 cannot )

be programmed), we push;1, - - 4,1 to levelk, too. So for theT rewrites, the target levels for the cells

having more than one auxiliary cell in a levehdicatesh = i.

For sufficiently largen, the g auxiliary cells have a negligible (Cra, = un o1, oy JCN T CNn)
effect on the code rate.

Now considerN VLC groupsGq, Gy, - - -, Gy, each ofn are
cells. (For capacity analysis, we considér— oo.) Fori = XN = £ (ml,x{)\’”> ,
1,---, N, denote the highest programmable level®fby
hie{l,---,q—1}, x2 =f (mz,x{\] ),

and denote its cells by

(Ci,l/ e /Ci,n) .
Herehq,--- ,hy are ii.d. random variables, where for<
i<Nandl1<j<g-—1, Xy fT(mT,XZ%] 1)

Pr{hi = j} = pip2 - pj(1 = pjs1). respectively, where
(Note p; = 1 and p, = 0.) If the target levelof cell cijis XN < xN
¢; j, we will program it to level
) fort = 1,---,T. However, while thetarget cell levels

min{(; j, hi}. for the t-th rewrite (fort = 1,---,T) are x" =
Then if h; < g —1 and thewritten levelof cell ¢; ; is h;, we (11, r_él,nrgzlr v by €N,1, : NEnN,n)
say that the cell is in thpartially-erased state the  written  cell  levels are vy, =

(gf A /T S oy
1,1/ 1,nr 2,17 2,17 AN AN )

En,, whereég, i = min{/; ;, hi}. For decoding, it is required that for

since its target level could be any value{iy, h; +1,--- ,g— t=1,---,T, we have
1}. In addition, for any two vectors = (x1, x5, -+, x;) and

y = (Y1, Y2, ,Yx), We say Pr{g: (y?’”) =mp} — 1
X<y asN — oo.
if x; <y;fori=1,---,k. Fort=1,---,T, define
_ 1
Definition 5. A Ry = N log, V.

(T/ Vl/ VZ/ te ,VT)

rewriting code for theN VLC groups consists of pairs of Then(Rq, Ry, -+, Rr) is called the rate vector of the code.

encoding and decoding functions .
We call the closure of the set of all rate vectors tapacity

{(fr, ) 1, region and denote it bydr. We present its inner/outer bounds.



A. Inner Bound to Capacity Region S1 = Sp = --- = St. For any constant > 0 (which can
We consider aub-channel codéor VLC. Let be arbitrarily small), we set

-2 . N
c1,C2,"** ,CN Vi = ZN[H(51)—L~:1 oq,iH(By,;) 26},

be N cells, one from each of th& VLC groups. (TheNn V= 2N[H(5,|st,1)—z?;f aiH(Bii)=2¢]  fort—=23,... T

cells in the N VLC groups can be partitioned inte such

“sub-channels.”) We define the rewriting code for tNecells We will prove that whenN is sufficiently large, there ex-

in the same way as in Definition 5 (by letting = 1). We ists an (T, Vy,V,,---,Vr) rewriting code for theN cells

denote its capacity region hylr. Clearly, for any giver, c¢1,¢2, - ,cN-

we haveAr C Ar. We first consider the case = 2. Let Tg denote the vectors
Let £ ={0,1,---,q — 1} denote the set of target levelsin £N = {0,1,---,5 — 1}V of type

Let& = {Eq, Ea,- -+, E;_2} denote the set of partially-erased

states. Ther U £ are written levels. For two random variables (51,0/51,1, e /Sl,qfl) :
X,Y taking values inl, we say ‘X = Y" if That is
Pr{X:x’Y:y}:O Té\i: {(xl,x2,~~~,xN)€£N|fori:0,1,~~,q—1,
for any 0 < y < x < g—1. Let random variables [{in=jsNx=i}| _ s1i).
S1,S,,-++,St form a Markov chain that takes values ih N ’
We say Similarly, let TSI\; denote the vectors i£N of type

S1= 5 =---=S57

if S = S fort =23,---,T. Fori = 1,2,---,T, N N _
let (s;0,5i1, - ,Siq—1) denote the probability distribution We construct two set§’y and T using random coding as

(52,0152,1, T 152,q71> .

where follows. From the seﬂ"é‘i, we uniformly randomly select
s;i=Pr{Si=7j
ij =Pr{Si=j} ‘TN
forj=0,1,---,9—1. 51
Given the random variable$y, Sy, - - -, St, we definea; ; 2N[Z?;12 o,iH(By,i)+e]
dB;; (fori =1,2,---,Tandj = 1,2,---,9g—2 - .
zjrlllow;] Ifeotr ! andj 1 ) as elements, and denote the selected subse'lfﬁy Similarly,
B . from the setTY, we uniformly randomly select
(q 1 > ( / ) )
o, = Sik pe | (1 Pj+1) :
kgj k|:|2 ‘TSI/\;
We defineB; ; to be a random variable taking values in INI[3!ZF i H(Byi)+]
{jj+1,---,9—1}, elements, and denote the selected subséfgl?y
where We first prove the following property:
q-1 o Property&: V x € Tf\i if we program theN cells
Pri{Bj =k} = six/ Zj Sil c1,--- ,cn with x as the target levels, lat e (LU &)Y

_ denote their written levels. Then with high probability
fork=j,j+1,---,9—1. We now present an inner bound  (which approaches 1 d¢ approaches infinity), the vector
to Ar. Since At C Ay, it is also an inner bound tely. y can be correctly decoded to

To prove Propertyh, consider the channel model for a cell

Theorem 6. DefineDr = {(Ry,Ry,---,Ry) € RT | there ¢, with its target level

exist Markov-chain random variables;, S,,- - - , St taking

values in{0,1,--- ,q — 1}, such thaty = S, = --- = St Xel

and . . .

as the input symbol and its written level
Ye LUE

as the output symbol. We hav&{Y = 0|X = 0} = 1; for
i=1,2,---,9—2, we have

Rq
Ry

)
< H(S) -3y, ‘Xlz,iH(Bl,i)/
< H(S|S1) = 311 an,iH(By,),

' 2
Rr < H(Sr|St—1) — ¥, ar;H(Br,).}
Then, we hav®r C Ar. { d i} =p2ps- pina

and fori=1,2,---,1,
Proof. SupposeSy, Sy, -+, St are Markov-chain ran- ] !

dom variables that take values {,1,---,4g — 1}, and that Pr{Y =E;|X =i} = paps---pj(1 = pjs1);



and we have Consider the second write. Let

Pr{Y=q—-1X=q—1} = pap3- - pg—1 {F, B, Fy,}
and forj=1,2,---,q—2, be a partition of the seff). Namely, U U2 F = TN and for
B B B anyi # j, ENF = = 0. We first show that the following
Pr{Y = Ej|X =q—1} = paps--- pj(1 = pja)- property holds:
The channel model fog = 6 is illustrated in Fig. 3. o Property{>: There exists a partitiogF;, F,, - - -, Fy, } of
We can see that K has the same distribution as the random  the setTg such that for anyu € Té\{ and anyv € I, =
variable S1, then fori =1,2,--- ,q — 2, {1,2,---,V,}, there exists a vectox € F, such that
-1 ; u<x
Pr{Y =E;} = ( z 51’].> (l‘ij> (1= piy1) = a1 ; To prove Property), we use the method of random coding.
j=i = For everyz ¢ Té\] , associate it with an index, that

is uniformly randomly and mdependently chosen from the

also, fori =1,2,--- g =2andj=ii+1---,q-1, message index sét = {1,2,---,V,}. Fori=1,2,---, V5,

51j ; define
Pr{X=jlY =E;} = —— = Pr{By; = j}. N ,
k:il S1k ! Fi={zeT§ |r.=i}.
Foranyi € £, if Y =i, thenX =i and H(X|Y = i) = 0. Then{F,F,---,Fy,} form a partition of the sefgi.
So we have For anyu 2 (uy,up,---,uy) € Té\’, define the set of
H(X|Y)P N VXY | conditional typical sequenc@‘s ) as
2zeLug PriY =z =z
= S.ce Pr{Y = z2}H(X|Y = 2) Tys, (W) = { (o100, on) € LYV (a,]) € L2,
= 317 o H(By,) SNt — pr{S; = a, 5, = b}},
Since and defineG(u) as
limy_ (102 ‘TND Gu)={ve Té\i | u <v}.
= limyoe 10g2 ‘T D — (317 H(Bi) +€|  SinceS; = Sy, we haveTé\]‘S (u) € G(u). By the property

= H(S) - Z h 0611H(B1z) —e of typical sequences [2], [3], we have
1=

= H(X)-H(X|Y)—e —?5NH(S,|S1)
il 00> [, 0] > v 427255,
< I(XY), Foranyv € I, = {1,2,---,V,} andu € TI‘{, we get
when N — oo, with probability one we can decode from Pr{E, N G(u) = 0}
A =

y based on their joint typicality. So Properdy is true. Using . =N
the same analysis, we get the following property Tg¥: Pr{for everyz € G(u), eitherr, # v orv ¢ Tg }

|G (u)]
o Property#: V x € Tl\i, if we program theN cells _ <1_ 21 )
1 =%, . €
c1,- -+, cn With x as the target levels, lgt € (LU &)Y V- 2NZizy 22, iH By )]
denote their written levels. Then with high probability < exp{— [G(u)]
(which approaches 1 &€ approaches infinity), the vector L 2NES L e, iH(B,) ] .
y can be correctly decoded to < exp{— (;\JH)*[J 2NH(82]51) i
i i i o HNIH 52\51)—2?;1 “z,iH(Bz,i)—Ze]*'N[X?;l ap ;H(By ;)+e]
We now discuss the encoding and decoding of The- 2 N
writes. For the first write, we choosg, different elements = exp{— NH) (Sj51)—62] ! }
~ _ 32 N
X1,X2,"',XV1€T£]I, = exp{ (N+1) ‘72 E}

By the union bound, we get
Pr{3v € I, andu € T3 such thatF, N G(u) = 0}
V- ‘TN‘ exp{—(N +1)~72Ne}

g?N - exp{—(N+1)71 ZNE}
— 0 asN — .

and set the encoding function as

f1 (Z) = X;.

To write datai € I; = {1,2,---,V1}, we program the cells
with x; as their target levels. Leg € (£LUE)N denote the
written levels. We set the decoding functign(y) as follows:

it first recoversx; from y based on joint typicality (which This implies that Property) is true.

succeeds with high probability by Proped), then map; We now describe the encoding and decoding functions of
to i. So the first write succeeds with high probability. the second write. Le{F;,F,-- -, Fy, } be a partition of the

IN N



1p, p,(1p3) pP,p5(1Pp,) P,P3P,(1P5)

Fig. 3. Channel model fog = 6 levels, withX, Y as input and output symbols, respectively. Here the probalfiiifyy = j|X = i} is labelled beside the
symbolj for Y.)

setTé\i that has the property described in PropejtyFor any and Mquov—chain (andom variablés ;, S, ;,- - - , St; taking
u € Té\i and anyv € I, = {1,2,---,V,}, there exists a valuesin{0,1,--- i}, such that
vectorx,(u) € F, such thatu < x,(u). We set the encoding

: , _ S1,= S2i= = St
function f,(v,u’) as follows: given the written levela’ of L 2 L

the first write, it first recovers the target levaisof the first ri;i < H(S1;),
write (which succeeds with high probability by Propeds), ro;i < H(S2ilS1),
then setsf,(v,u’) = x,(u). When the target cell levels of .
the first write areu, to write datav € I, in the second write, ’
< H(SrilST-1,),

we program the cells with,(u) as their target levels. Let "
y € (LU S)N denote the written levels. We set the decodingnd forj =1,2,---, T,
function g, (y) as follows: it first recoversc,(u) from y
based on joint typicality (which succeeds with high probability
by Property#), then mapsx,(u) to v. So the second write
succeeds with high probability.

The above proof fofl' = 2 can be easily generalized to th

q—1
R; = kz pip2- (L= pry)7je b
=]

eLetCT be the closed set generated®y. Then, we have

proof for generall. The encoding and decoding functions for T =Cr.

the tth write (fort = 3,4, .-, T) can be defined in the same ] o

way as for the second write. So we get the conclusionm Proof: Fori = 1,2,---,q4—1, let Q; be the indices of
Note that if py = ps = -+ = p, 1 = 1 (namely the VLC groups whose highest reachable levels are all level

every cell can be programmed to the highest leyet i. That s,

1 with guarantee), we gety;; = 0 for all i,j. Cor} Qi={je{L2--- N} |hj=i} C{1,2,--- N}
sequently, the set of achievable rates presented in th _

above theoremDr, becomesDr = {(Ry,Ry,---,Ry) € Also, define

RT | there exist Markov-chain random variablgs, S,, - - - , o o pi(1 = pien)

Sr, suchthats; = S, = .- = S andR; < Yi=Pipaceo i Piv1):

H(S1), Ry < H(S2[S1), -+, Rr < H(St|ST-1)}, which  (As before,p, £ 0.) Clearly,

is exactly the capacity region of MLC witl levels [3]. 0

N Y
with high probability asN — oco.

To derive an outer bound to the capacity regioty, We first prove that all rate vectofRy, Ry, --- ,R7) in Gr
we consider the rewriting code as defined in Definition %re achievable rate vectors. It is known that for WOM ef1
but with an additional property: the highest reachable levdlsvels [3], the rate vector
hi,hy,- -+, hy for the N VLC groups are known in advance.

Thus the encoding and decoding functions can use that infor- (riistais- -, rTi)
mation. LetA% denote its capacity region. Clearld; 2 Ar,
so it is an outer bound tolr.

B. Outer Bound to Capacity Region

is achievable forT writes if and only if there exist Markov-
chain random variable$, ;, S,;,---,St; taking values in
{0,1,---,i} such that

Theorem 7. DefineGr = {(R1, Ry, -+, Rr) € RT | fori = S1;= Sy = - = Sp;
1,2,---,9—1, there exist

and

(rii v i) € RT r,; < H(S1),



12 < H(S24]51,), Define Sp; = 0. It is not hard to see tha$; ;, Sa;,- -+, St
form a Markov chain, and for any € {1,2,---,T} the

v random variables(S;_1, S;;) and (Y;_1,1,,Y;1,) have the
rri < H(STi|S1_1;). famze grobabgity distribution. SH (S ;) = H(Y1,,) and for

So fori =1,2,--- ,4 —1, we can use the cells in the VLC
groups indexed by); to achieveT writes with the rate vector H(S4,ilSt-1,1) = H(Ye,,[Ye-1,1,)-
(r1i, 724, -+ ,rri). Together, theN VLC groups achievel SinceY;_1, = Yy, fort =2,3,---,T, we haveS;; =
writes with the rate vectofR1, Ry, - -, Rr). S, = - = St;. Therefore fort =1,2,---,T,

Next, we prove the converse. Given(&, V1, V,, -+, Vr)
code, we need to show that

1 ~
7 1082 Vi < 3 ViH(SilS10).
. ) 1 =)
(Nn log, Vi, 1y, 108, Va, -+, 7 1085 VT) €Jr. So we have

We use the same technique of proof as in [3] (Theorem 3.1). <1 log, V1, 1 log, Vo, -+, 1 log, VT) € gr.

Fort = 1,2,---,T, let f;, g; denote the encoding and Nn Nn Nn

decoding functions of the code for tieh write, respectively. That completes the converse part of the proof..8p= Cr.
Let Wy, W,, - - -, Wr be independent random variables that u

are uniformly distributed over the message index ket= Let

{1,2,---,Vi} (fort =1,2,---,T), respectively. Le¥)" £

{0,0,---,0} denote the all-zero vector of lengtkin. Then

T
My 2 max{y R¢[(Ri, Ry, -+, Rr) € Ar}
fort=1,2,---,T, define =1

denote the maximum total rate of all rewriting codes for
Yf’” = Y1, Y2, YiNn) VLC. It is known that for WOM (i.e., MLC) ofi 41 levels,
the maximum total rate ovef writes islog, (Tl.“) [3]. By
Theorem 7, we get
My < max{y/;R¢|(Ry, Ry, -, Ry) € A}}

o . . 7 .
That is, Y} denotes the cell levels after theh write. It is not _ zZ:1 p1p2 -+ pr(1 = pryq) log, (Tz ).
hard to see that

IV. CONCLUSION

as
YNV = fi (WtrYfinl) -

H(Wi) = HOY YY) This paper introduces a new data representation scheme,
fort=1,2,---T. variable-level cells, for nonvolatile memories. By adaptively
Fori=1,2,---,q—1, let choosing the number and positions of levels in cells, higher

5 storage rates can be achieved. The storage capacity of the VLC
Q;<{1,2,---,Nn} scheme is proved. Coding for rewriting data is also analyzed

q . . folr the VLC scheme, and both inner and outer bounds to the
enote the indices of the cells whose highest reachable Ieveas acity redion of rewriting are presented

are alli, and letL; be an independent random variable that ¢!y red g P |

is uniformly distributed over the index s€},. (Specifically, ACKNOWLEDGMENT
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