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GEOMETRIC ROUTING IN WIRELESS
NETWORKS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 60/673,271 filed Apr. 20, 2005 entitled Rout-
ing in Wireless Networks Based on Medial Axis and Other
Geometric Features. The disclosure of 60/673,271 is incor-
porated herein by reference in its entirety.

STATEMENT AS TO RIGHTS TO INVENTIONS
MADE UNDER FEDERALLY SPONSORED
RESEARCH AND DEVELOPMENT

Work described herein has been supported, in part, by the
National Science Foundation (Grant No. CCR-TC-0209042).
The United States Government may therefore have certain
rights in the invention.

BACKGROUND

Routing is elementary in all communication networks.
Such routing involves transmitting network data traffic
among the devices that communicate together and comprise
nodes of the network. The design of routing algorithms is
tightly coupled with the design of auxiliary infrastructure that
abstracts the network connectivity. For networks with stable
links and powerful nodes, such as the Internet, infrastructures
such as routing tables are constructed and maintained so that
routing can be performed efficiently at each router by a rout-
ing table look-up, and routing paths are close to optimum. For
networks with fragile links, constantly changing topology,
and nodes with less resourceful hardware, such as ad hoc
mobile wireless networks, routing tends to be infrastructure-
less and on-demand. However, without any auxiliary infra-
structure, discovery of routes in such wireless networks may
have to rely on flooding the network.

Flooding involves the broadcast of flood message packets
across the network so that each node receiving a packet will
rebroadcast that packet on links other than the receiving link.
A network path query can be solved in this way, so that when
a destination node receives the flood packet, it can report the
path that was traversed, thereby identifying a network route
from the original sending node to the destination node. Flood-
ing can result in redundant rebroadcast of flood messages.
This unnecessarily increases network traffic and increases
node energy consumption. As a result, efficient routing is of
great concern for those who are involved with planning for
wireless networks.

One type of wireless network is the wireless sensor net-
work. Such networks typically include many autonomous,
battery-powered communication devices that include envi-
ronmental sensors for collection of data and radio frequency
transceivers for network communications and data transfer.
Network routing is important because nodes may need to
share information among themselves or may need to move
data from an originating node to a destination node. In wire-
less sensor networks, where sensor nodes are movable but
generally stationary and are deployed in a geometric space,
each sensor node has a constrained power supply, and thus
energy conservation is an important consideration in the
design of routing protocols. Reactive routing protocols,
which are designed mainly for ad hoc mobile wireless net-
works and rely on flooding for route discovery, are typically
much too energy-expensive for sensor networks. It is also
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2

observed that wireless links for static sensor nodes, such as
Berkeley motes, are reasonably stable. Therefore it is advan-
tageous to preprocess the network and maintain some light-
weight infrastructure so that efficient and localized routing
can be performed.

A goodintuition on how to build a lightweight and effective
auxiliary infrastructure is that sensor networks are closely
related to the geometric environment in which they are
deployed. Two nodes can directly communicate when they
are geographically close. Thus geometric proximity informa-
tion has high correlation with network topology. This intu-
ition has been used in geographical forwarding, which is used
to efficiently and effectively make routing decisions based on
the geographical locations of destinations and the one-hop
neighboring nodes. In geographical forwarding, a packet is
greedily forwarded to the one-hop neighbor that is geographi-
cally closest in position to the destination. Such an abstraction
of the network connectivity based on the Euclidean coordi-
nates of a node has tremendously simplified the design of
routing protocols and improved routing efficiency. For a sen-
sor network with uniform and dense sensor deployment in a
flat and regular region, geographical forwarding has been
found to be an efficient and scalable scheme that produces
almost shortest paths with very little overhead.

An issue on the practicality of geographical routing is how
to obtain the geographical locations of a large number of
sensor nodes. An essential part of the preprocessing overhead
of building the infrastructure for geographical routing is to
solve the localization problem, namely, finding the Euclidean
coordinates of the sensor nodes. Localization to physical
coordinates can be achieved by either hardware support such
as Global Positioning Systems (GPS), or by algorithms that
determine the locations of sensor nodes from their local inter-
actions. In fact, if sensors are densely deployed in a flat
regular region with simple geometry (e.g., a disk with no
holes), then greedy geographical routing is robust enough to
localization errors, and approximate locations suffice. See,
for example, A. Rao et al., in Proceedings of the 9th annual
international conference on Mobile computing and network-
ing, pages 96-108, ACM Press (2003); J. Bruck et al. in Proc.
6th ACM International Symposium on Mobile Ad Hoc Net-
working and Computing (MobiHoc’05), May 2005.

The greedy geographical forwarding, however, runs into
serious problems for sensor fields with complex geometry. In
many of the real-world situations where sensor networks are
deployed, such as metropolitan areas, warehouses, university
campuses, and airport terminals, the sensor field naturally has
a complex shape and can have many holes (regions where
sensors are not deployed due to the existence of obstacles).
When there are holes in a sensor field, greedy forwarding can
fail when all the neighbors are further away from the desti-
nation. In other words, a route created by greedy forwarding
tries to follow a straight line from source to destination, which
is often blocked by obstacles in a complex environment. A
number of ways have been devised to get around holes. For
example, face routing or perimeter routing deals with this
case by routing a packet along the face of a planar subgraph
until greedy forwarding can be performed again. See B. Karp
and H. Kung, in Proc. of the ACM/IEEE International Con-
ference on Mobile Computing and Networking (MobiCom),
pages 243-254 (2000); P. Bose et al., in 3#d Int. Workshop on
Discrete Algorithms and methods for mobile computing and
communications (DialM 99), pages 48-55 (1999).

If the sensor network has rich geometric features, perim-
eter routing has to be adopted frequently. There are several
issues with face routing or perimeter routing. The correct
construction of the planar subgraph depends heavily on accu-
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rate location information, which is very hard to obtain, and
the assumption that the communication graph is a unit disk
graph, which does not hold in practice. See, for example, D.
Ganesan et al., Complex behavior at scale: An experimental
study of low-power wireless sensor networks; Techrical
Report UCLA/CSD-TR 02-0013, UCLA (2002). Inaccurate
location information or a slight deviation of the communica-
tion graph from the unit disk graph model may cause the
planar subgraph to be disconnected. See, for example, K.
Seada et al., in IPSN'04: Proceedings of the thivd interna-
tional symposium on Information processing in sensor net-
works, pages 71-80, ACM Press (2004). Further, perimeter
routing creates awkward routing paths along the boundaries
of holes. Overloading of nodes on the boundaries of holes
exhausts the batteries of those nodes quickly, which will
further enlarge the holes and eventually connect small holes
to big holes or even disconnect the network.

The failure of greedy forwarding for sensor fields with
complex geometry and/or non-trivial topology occurs mainly
because the geographical location information, on which
routing rules are based, does not correlate well with the con-
nectivity graph. Two nodes that are geographically close may
actually be far away in the connectivity graph. A good infra-
structure for this case should not only abstract the geometric
proximity of the sensors, but also the global geometric shape
and topological features of the sensor field. This intuition is
validated by the observation that the global shape and the
topological features of the layout mostly reflect the underly-
ing structure of the environment (e.g. obstacles), and they are
likely to remain stable. Nodes/links may come and go. But
only when such changes are of large quantity and geographi-
cally correlated, can they possibly modify the global shape of
the sensor field, or destroy/create large-scale topological fea-
tures. Thus we can afford to explicitly compute an abstraction
of'the geometry of sensors and carry out proactive routing at
this abstract level, such that these high-level combinatorial
routes can be efficiently realized in the network by localized
and decentralized protocols.

A protocol that explicitly states the importance of topologi-
cal information in routing in sensor networks with large
holes, called GLIDER, was recently proposed by Fang et al.
See Q. Fangetal.,in Proc. of the 24th Conference of the IEEE
Communication  Society (INFOCOM), March 2005.
GLIDER is a naming and routing scheme based on geo-
graphical landmarks, where the global topology of the net-
work is represented by a compact abstract Delaunay triangu-
lation on a set of landmarks, and is used in a global planning
step to guide routes around holes. However, the performance
of'landmark-based routing algorithms heavily depends on the
selection of landmarks; yet there is currently no theoretical
understanding on how to select a good set of landmarks.
Moreover, landmark-based routing depends on network
nodes knowing their position relative to the landmarks, which
can require complicated processing and communications
resources. In addition, such routing sometimes depends on a
set of stable, fixed physical locations within the sensor field.
Any disruption to the landmark locations will cause the rout-
ing to fail. Increasing the size of the sensor network can
require finding new landmarks, which can constrain scalabil-
ity.

From the discussion above, it should be apparent that there
is a need for a routing scheme for wireless networks that is

20

25

30

35

40

45

50

55

60

65

4

resource efficient, independent of location information, and
has good scalability. The present invention satisfies this need.

SUMMARY

Routing in a wireless network of communication devices
that are located within a network boundary moves network
traffic from a first communication device to a second com-
munication device by first constructing a geometric abstrac-
tion of network connectivity that identifies a curve on which
network nodes are located. Such a curve can be provided by,
for example, the medial axis of the wireless network. Next, a
network location for each node of the wireless network is
determined, so that the network location of a node p identifies
a node on the geometric indicator curve that is closest to the
node p and indicates connectivity from the node p to the
closest node of the geometric indicator curve. A routing
scheme is determined, to route in the wireless network from
the first communication device to the second communication
device based on the respective determined network locations
for the first and second communication devices. Using a
geometric indicator of network connectivity means that no
geographic position information or coordinate system for
locating the nodes is required. Instead, only node connectivity
information is used, indicating the network separation
between nodes (such as hop counts) rather than using Euclid-
ean (linear) distance between nodes based on an underlying
coordinate system. Thus, no geographic position information
is required for determining the routing scheme. In this way,
the disclosed routing scheme provides a determination of
network location for the nodes that is independent of geo-
graphic position information, so that the route can be deter-
mined efficiently without complicated processing or commu-
nications. Routes are efficiently determined and can be
determined locally, at nodes of interest. Thus, the routing
scheme easily adapts to new nodes and deletion of nodes,
providing good scalability.

Other features and advantages of the present invention
should be apparent from the following description of the
preferred embodiments, which illustrate, by way of example,
the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram representation of a wireless
network with multiple communication devices constructed in
accordance with the invention.

FIG. 2 is a block diagram that shows construction of one of
the communication devices illustrated in FIG. 1.

FIG. 3 is a flow diagram that illustrates processing of one of
the communication devices illustrated in FIG. 1.

FIG. 41is aflow diagram that illustrates processing ofa F1G.
1 communication device in constructing a geometric abstrac-
tion.

FIG. 5is aflow diagram that illustrates processing ofa F1G.
1 communication device in determining network node loca-
tion.

FIG. 61is aflow diagram that illustrates processing ofa F1G.
1 communication device in determining a route between two
network nodes.

FIGS. 7(a), 7(b), 7(c), 7(d), 7(e), and 7(f) are representa-
tions of a sensor network that illustrate processing of com-
munication devices such as illustrated in FIG. 1 in accordance
with the processing illustrated in FIGS. 2-6.

FIGS. 8(a), 8(b), 8(c), and 8(d) is a representation of a
sensor network that illustrates determination of a network
route in accordance with the processing illustrated in FIGS.
3-6.






