
Robust Planarization of Unlocalized Wireless
Sensor Networks

Fenghui Zhang, Anxiao(Andrew) Jiang, and Jianer Chen
Dept. of Computer Science, Texas A&M Univ. College Station, TX 77843. {fhzhang, ajiang, chen}@cs.tamu.edu.

Abstract—Wireless sensor networks need very efficient net-
work protocols due to the sensors’ limited communication and
computation capabilities. Network planarization – finding a
planar subgraph of the network that contains all the nodes – has
been a very important technique for many network protocols.
It first became the foundation of various well known routing
protocols, including GPSR, GOAFR and several other protocols.
Since then, it has also been used in numerous other applications,
including data-centric storage, network localization, topology
discovery, etc. However, an important problem remains: network
planarization itself is very difficult. So far, efficient planarization
algorithms exist only for very restrictive models: the network
must be a unit-disk graph, and accurate measurements related
to the node locations (e.g., node positions or angles between
adjacent links) need to be known. For more practical network
models, where the transmission ranges are usually not uniform
and sensors cannot obtain their accurate location information
via expensive localization devices, no efficient planarization
algorithm is available.

In this paper, we present a novel method that robustly
planarizes sensor networks of a realistic model: networks with
non-uniform transmission ranges and unlocalized sensors (that is,
static sensors whose locations are unknown). Our method starts
with a simple shortest path between two nodes, and progres-
sively planarizes the whole network. It achieves both efficiency
and a good planarization result. We present two planarization
algorithms for different settings. Our results not only solve the
planarization problem, but also outperform some known results
in the graph drawing research field. We demonstrate the practical
performance of our method – as well as its application in topology
discovery, – through extensive simulations.

I. INTRODUCTION

Wireless sensor networks usually need very efficient net-
work protocols due to the limited communication and com-
putation capabilities of small sensors. Therefore, it is espe-
cially important to exploit the special topological properties
of sensornets for the many network functions. A common
observation is that the topology of a wireless sensornet usually
has a strong correlation with the geometry of the sensor
field. That observation has been used in numerous notable
applications, including geographic routing [12], etc. In these
applications, network planarization has become a very impor-
tant technique, because a well planarized network not only
exhibits the geometric properties of the sensor field, but can
also be efficiently utilized in network protocols.

The objective of network planarization is to get a connected
planar subgraph of the network that contains all the nodes
of the network. To well reflect the geometry of the sensor
field, the planar subgraph should contain many links, so
that the hop distance (or communication distance) between

nodes does not change a lot after planarization. Network
planarization first became the foundation of several well
known geographic routing protocols, including GPSR [12],
Compass Routing [13], GOAFR [14], etc. Such protocols
use the faces in the planar subgraph to perform perimeter
routing, which guarantees packet delivery. Since then, network
planarization has also become a fundamental tool in numerous
other applications, including data-centric storage [17], network
localization [15] and topology discovery [18] [8] [9]. Here
the data-centric storage schemes use the planar graph to help
determine on which set of nodes to store each datum, as well
as for routing; the network localization schemes can use the
properties of planar graphs to facilitate localization; and the
topology discovery schemes can use the faces of the planar
graph to recognize and locate boundaries and holes in the
sensor field. Discovering boundaries and holes in a sensor
field is useful for understanding the collected sensor data
(because the meaning of sensor data often depends on the
type of physical environment where they are collected), for
understanding the sensing environment (e.g., building floor
plan, transportation network, lakes) and detecting events (e.g.,
fire in a forest), and for load-balanced routing.

Although network planarization has been proven to be an
excellent technique for sensor network protocols, an important
problem remains: network planarization itself is difficult. So
far, efficient planarization algorithms exist only for network
of very restrictive models: unit-disk graphs with accurately
known measurements related to the nodes’ physical locations.
The measurements are the nodes’ positions, the angles between
all adjacent links, or the lengths of all links. A unit-disk
graph (UDG) is a graph where two nodes have a link between
them if and only if their physical distance is at most one. So
it corresponds to a network where the transmission ranges
are the same for all nodes and in all directions. For unit-
disk graphs with the accurate location measurements, network
planarization can be performed efficiently and distributively
by using the techniques based on Gabriel-graph, Relative-
Neighborhood graph or Delaunay graph [2]. When the accu-
rate node positions are known and the network is very similar
to the unit-disk graph, – specifically, when it is the so called√

2-quasi unit disk graph, – although no network planarization
algorithm is known, the problem can be circumvented to some
extent by using “virtual links” [1]. However, the virtual links
may need to be realized by long paths in the network, which
makes the approach not so useful for many applications. For
more general networks, no efficient planarization method is

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

978-1-4244-2026-1/08/$25.00 © 2008 IEEE

known. Practical sensor networks often deviate significantly
from the unit-disk graph model. The transmission ranges of
sensors usually vary substantially in different directions due
to reasons including multi-path fading, antenna design, etc.,
and it is common to observe a variation ratio up to five or
more [10]. Also, it is often hard for sensors to obtain accurate
location measurements via expensive localization devices (e.g.,
GPS) or localization algorithms [2]. No efficient network
planarization algorithm is currently available for such practical
wireless sensor networks.

In this paper, we present a novel method that robustly
planarizes sensor networks of realistic models: networks with
non-uniform transmission ranges and unlocalized sensors (that
is, sensors whose location information is unknown). The
method starts with a simple shortest path between two faraway
nodes, and progressively planarizes the whole network.

The key for our approach is to solve the so called BIPARTITE

PLANARIZATION problem. It has been proved to be NP-
hard [7]. We present two planarization algorithms for different
settings. We first present a (2 + 3ε)-approximation algorithm
for this problem. The algorithm is applicable to general
networks, and achieves the best known approximation ratio. It
outperforms the known results in the graph drawing research
field [6].

We then present a fixed parameter tractable (FPT) algorithm
that solves the problem exactly (namely, it finds the optimal
solution). The algorithm uses the key observation that when
a certain parameter is small, the problem can be solved in
polynomial time. We show the usefulness of the algorithm to
practical networks by simulations.

Since no information on node locations is known, the planar
subgraph output by our method is not embedded. It is already
sufficient for some applications, such as topology discovery
(boundary recognition) [8]. If a plane embedding is needed,
it can be obtained by applying existing planar embedding
algorithms in graph drawing [4], [16] or in [8] [9] on the
planarized network. The embedded graph can then be used
for many applications, including geographic routing [11]. We
demonstrate the performance of our planarization method and
its application to topology discovery by extensive simulations.
We show that the planar subgraphs maintain the distance be-
tween nodes with small stretches, detect holes and boundaries
with a much higher precision than existing methods, and are
very robust to the network models.

II. OVERVIEW OF THE PLANARIZATION SCHEME

In this section, we present an overview of the planarization
scheme. It consists of five steps, described as follows.

A. Finding A Shortest Path Between Two Faraway Nodes

The first step is to find a shortest path between two faraway
nodes. The two faraway nodes can be found with the following
common approach: first, randomly choose a node a, use one
flooding to build a shortest path tree rooted at a, and find the
node b that is the furthest (in hops) from a in the network;
then, use a similar method to find the node c that is the furthest

(in hops) from b. b and c are the two faraway nodes we need,
and the unique path between b and c in the shortest path tree
rooted at b is the shortest path between b and c. The advantage
of a shortest path between two faraway nodes is that such a
path usually does not twist, regardless of the uniformity of the
transmission ranges. One can prove that edges on such path do
not cross each other if the sensor nodes in the network have
uniform transmission range. In the case when the transmission
ranges are very different, it is still very likely that such path
does not twist. Thus it has a good planarity property. This
observation is validated by extensive simulations. We illustrate
this property in Fig. 1. The two networks have drastically
different features in the uniformity of transmission ranges, and
the path is similar to a straight line in both cases. (When there
are holes in the sensor field, the path may not be straight but
still spreads out well.)

(a) (b)

Fig. 1. The shortest path between two faraway nodes, in two sensor networks
with drastically different transmission ranges. The average degree is 7 in both
cases. (a) A sensornet with uniform transmission ranges. (b) A sensornet
where the transmission ranges in different directions vary by up to 10 times.

In the following, we will call the shortest path between b
and c the base path.

B. Building A Shortest Path Tree

The second step is to build a shortest path tree. First, we
find a node r1 that is the furthest away (in hops) from the
base path. This can be easily done by viewing the nodes in
the base path as a super node, and build a shortest path tree
rooted at this super node. Then, we build a (any) shortest path
tree rooted at node r1. See Fig. 2 (a) for an illustration.

C. Planarizing The Network Layer by Layer

In this third step, we planarize part of the network layer by
layer. The nodes in the base path are in Layer 1. Recursively,
in the shortest path tree rooted at r1, if a node is the parent
of a node in Layer i and is not included in any of the first i
layers, then it is in Layer i+1. A node that is not the ancestor
(in the tree) of any node in the base path is not included in
any layer. Let us say that the maximum layer found this way
is Layer M . See Fig. 2 (b) for an illustration.

We progressively build a planar graph that includes the
nodes in the M layers. First, we process Layer 1 and Layer
2. Let G = (V1 ∪ V2, E) denote the bipartite graph where the
nodes in Layer 1 are in one row and the nodes in Layer 2 are

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

(a) (b)

Fig. 2. Red (darker) edges indicate (a) The shortest path tree rooted at node
r1. Here r1 is near the up right corner of the network. (b) The nodes in the
layers, and the edges between layers.

bottom row
(layer i)

top row
(layer i+1)

a b c d e f g h i

987654321

1 2 3 4 5 6 7 8 9

bottom row
(layer i)

top row
(layer i+1)

a b c g h iedf

Fig. 3. Planarize two adjacent layers. The upper graph is before planarization,
and the lower graph is after planarization.

in the other row. The edges in G are all those network links
between Layer 1 and Layer 2. See Fig. 3 for an illustration.
In the bipartite graph G, the nodes in the bottom row – which
are the nodes in Layer 1 – are placed following their order in
the base path. The nodes in the top row – which are the nodes
in Layer 2 – are not ordered yet. We then use a planarization
algorithm to remove some edges from G, and order the nodes
in the top row, so that the remaining edges do not cross each
other. (All the edges are straight.) Thus we obtain a planar
subgraph between Layer 1 and Layer 2. Then, we process
Layer 2 and Layer 3 in the same way, then Layer 3 and Layer
4, · · · , and finally Layer M−1 and Layer M . Note that when
we are processing Layer i and i+1, the nodes in Layer i (the
bottom row) have been ordered. So the same algorithm can
be used M − 1 times. All the edges we keep in these M − 1
steps form a planar graph.

The general idea is that the base path and the shortest path
tree rooted at r1 both act as good references for planarization.
By processing the nodes layer by layer, we comb through
the network and obtain a planar subgraph. The planarization
algorithm for planarizing the edges between two adjacent
layers is the key operation in our method. We present the
details of the algorithm in the following sections.

D. Building A Second Shortest Path Tree and Planarizing The
Network

The planar graph built so far is a skeleton of the network
covering part (often about half) of the sensor field. In this
step, we build a second shortest path tree and planarize more
of the network. This second tree is rooted at the node r2 that
is the furthest (in hops) from the node r1. The planarization
process is exactly the same as the process in the previous step
(namely, the third step), except that here node r2 replaces node
r1, and we do not include in the layers here those nodes that
have been included in Layer 2 through Layer M − 1 in the
previous step. See Fig. 4 (a) for an illustration. The planar
graphs built in this step and the previous step together form a
large planar subgraph that covers most of the sensor field.

e

f

c

d

b

a

(a) (b)

Fig. 4. (a) After finishing the first tree, we build the second and planarize it
similarly. Edges of the second tree are red (lighter); (b) The path a → b → c,
the edge c − d, and the edge e − f can be added into the planar graph.

E. Refining The Planar Graph

The planar graph built so far is a skeleton of the network,
which usually covers the whole sensor field. Those nodes
outside it are usually within a few hops from it. To include
all nodes into the planar graph and to include more edges,
three simple steps are performed. First, if a node in the planar
graph – which we shall call Gplanar – finds that it has many
1- or 2-hop neighbors outside Gplanar, it uses a 4-hop (one
can use 3- or 5-hop as well) localized flooding to add one
or more paths to Gplanar, as long as the new path connects
nodes in the same face and therefore preserves the planarity of
Gplanar. Note that the previous planarization steps already tell
us what the faces in the planar graph are, so this operation is
easily doable. Second, if there are still nodes outside Gplanar,
they connect themselves to Gplanar via small trees, which is a
simple operation. The trees preserve the planarity of the graph.
At this moment, the planar graph contains all the nodes. Then,
to add more edges to Gplanar, the nodes add their incident
edges to it if the new edge connects two nodes in the same
face (and therefore preserves the planarity). Now we get the
final planar subgraph of the network. See Fig. 4 (b) for an
illustration on how the refining is done.

III. AN APPROXIMATION PLANARIZATION ALGORITHM

In the previous section, the planarization scheme is pre-
sented. The key operation is how to planarize two adjacent

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

layers. That is also the only part of the scheme whose detail
has not been specified. Naturally, our objective is to remove
as few edges as possible during planarization, because a
dense planar graph is desirable. In this section, we present
an approximation algorithm to this NP-hard problem.

We formally define the problem as follows:

BIPARTITE PLANARIZATION problem (BiPP): In a
bipartite graph G = (V1 ∪ V2, E), the nodes in the
bottom row V1 are already linearly ordered, and the
nodes in the top row V2 are not (See Fig. 3 for an
example). How to remove some edges from G, and
linearly order the nodes in the top row V2, so that
no two edges cross each other? The objective is to
minimize the number of removed edges.

In the graph drawing research field, this problem is also
called the ONE SIDED TWO-LAYER PLANARIZATION problem.
It is known to be NP hard, even when the nodes in V2 have
degrees at most two and the nodes in V1 have degrees at most
one [7]. The best existing solution that runs in polynomial time
is a 3-approximation algorithm [6], i.e., it returns a solution
that removes at most three times the number of edges an
optimal solution would remove. In this section, we present
a new algorithm whose approximation ratio can be arbitrarily
close to 2, thus improving the best known result.

In the rest of the paper we assume that each layer (row) is
to be placed on a horizontal line. Let us define a few terms.
For any two nodes v1 and v2 in the bottom row V1, if they
are adjacent (in the sense of the given ordering of the nodes
in V1), then we imagine there is a virtual edge between v1

and v2. We say that a node u ∈ V2 covers a virtual edge e if
u has neighbors in the graph G that are on both the left side
and the right side of e in the bottom row. Such a node u is
called a cover node of e. The number of nodes in V2 covering
e is called the cover number of e. All the edges incident to
a cover node of e are called the walls of e. Note that every
cover node of e is incident to at least two walls of e.

Our approximation algorithm is based on the following
observations.

Observation 1: In any solution to the BIPARTITE PLA-
NARIZATION problem, the cover number of any virtual edge
e is at most 1. Therefore, if the cover number of e is y in the
graph G, any solution must remove at least y − 1 walls of e.

We illustrate the above definitions and properties in Fig. 3:
(1) In the upper graph, e, f are cover nodes of the virtual
edge {5, 6} and make its cover number be 2. (2) If c is the
only cover node for virtual edge {3, 4} in an optimal solution,
neither of the walls {c, 3} and {c, 4} is removed by that
solution.

Therefore, when the cover number of a virtual edge is large,
if we remove two walls around e for each of the cover nodes,
we would have removed no more than twice the number of
edges removed by any solution plus one. This technique is
used in our algorithm.

On the other hand, if the cover numbers of all the virtual
edges are relatively small, we can solve the problem efficiently

with the divide and conquer technique. The following obser-
vation is the basis for the divide and conquer technique.

Observation 2: If the cover number of a virtual edge e is y
in the graph G, then in any solution, at most one of e’s cover
nodes can keep all its corresponding walls around e. For all the
other cover nodes of e, each of them must remove all the walls
on at least one side of e. Therefore, if we enumerate all the
possible ways to solve the conflicts at e in any solution, there
are at most y2y−1+2y cases to consider. (Specifically, for each
cover node, we first consider if its walls should be removed; if
yes, we consider which side of the walls to remove. So there
are y2y−1 + 2y cases.)

If a virtual edge e has no cover node in a solution, the nodes
in the bottom row can be separated into two parts: the left of e
and the right of e. Then every node in the top row is adjacent
to nodes in only one of the two parts. So in that case, the
problem can be solved for the two subgraphs separately. If in
an optimal solution, e has one cover node, then the following
observation tells us that we can still divide the problem into
two parts.

Observation 3: Suppose that in an optimal solution, a vir-
tual edge e has exactly one cover node u. If the wall wl

(respectively, wr) incident to u is the closest edge to e from
the left(respectively, right) side, then w1, w2 must have not
been removed by that optimal solution (as shown in Fig. 3).
In that case (assuming that we have guessed this case to be
true), when we search for the optimal solution, we can mark
the two walls closest to e from each side (namely, w1 and
w2) to be unremovable (namely, we do not remove them in
the algorithm).

The approximation algorithm is shown in Algorithm 1.

Algorithm 1 APX-BiPP
Input: G = (V1 ∪ V2, E), ε
Output: Gplanar: A solution to the BiPP.

1: repeat
2: e← a virtual edge in V1 with cover number > 1/ε
3: for each cover node of e, remove a wall incident to that

node from each side of e
4: until no virtual edge in V1 has cover number larger than

1/ε
5: call the procedure Exact-BiPP(G) and return the result.

Let us first look at the subroutine Exact-BiPP, in any case
the edge e will be a separator for the problem in the sense that
no two nodes on both side of e share a neighbor in V2 except
v, the one we decided to keep “over” e. In that case {v, u1}
and {v, u2} are both kept in the final solution and marked
unremovable, the two subproblems formed in line 6 of Exact-
BiPP will not affect each other. In the case e has no cover
node in the solution, it is clear that we have split the problem
into two independent subproblems. Since we enumerate all
possible cases at e in the recursive stage, we will get the
optimal solution.

Assuming that the maximum cover number for virtual
edges in V1 is c and T (n) is the running time of the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

Algorithm 2 Exact-BiPP
Input: G = (V1 ∪ V2, E)
Output: Gplanar: A solution to the BiPP; and the number of

edges removed
1: Let n be the number of nodes in V1. If n < 5, solve the

problem in the brute force way, and return the solution.
2: e← the �n/2�-th virtual edge in V1

3: y ← the cover number of e
4: for all y2y−1 + 2y cases at e (see Observation 2) do
5: skip this iteration if in this case, an unremovable edge

is to be removed
6: the problem is now split into two disjoint subproblems

of roughly the same size, recursively call Exact-BiPP
on them.

7: record the solution of this case if it removes the least
number of edges among all cases considered so far,

8: end for
9: remove edges according to the best solution got above

10: return G and the number of edges removed

algorithm where n = |V1|. We have the recurrence relation-
ship T (n) < 2 × c2cT (n

2). This recursion has a solution
T (n) < (2c2c)log n = nc+log c+O(1). Hence we have the
following lemma immediately.

Lemma 1: The algorithm Exact-BiPP finds the optimal
solution for the BIPARTITE PLANARIZATION problem and runs
in time nc+log c+O(1) where c is the maximum cover number
for all virtual edges in V1 and n is the number of nodes in V1.

In the following theorem, we prove the algorithm APX-
BiPP’s approximation ratio, 2 + 3ε, and its polynomial time
complexity. The parameter ε can be a arbitrarily small positive
number, so we assume that ε ≤ 1/3.

Theorem 1: The planarization algorithm APX-BiPP is a
(2 + 3ε)-approximation for the BIPARTITE PLANARIZATION

problem. It runs in time O(|V1| 1ε +log 1
ε +O(1) + |E||V1|).

Proof: First it is simple to see that the algorithm produces
a solution for the problem.

Let us look at the approximation ratio. In the recursive stage
(subroutine Exact-BiPP) of the algorithm, by Lemma 1 we get
the exact solution.

While in the preprocessing stage (lines 1 through 4 in APX-
BiPP), there are a(e) > 1/ε nodes in V2 covering e, and at
most one of them can be the cover node of e in any solution.
We removed 2a(e) edges over e. That is at most a(e)+1 more
than the number of edges removed by an optimal solution S.

Suppose that in the preprocessing stage (lines 1 through 4
in APX-BiPP), we have run the loop m times. Let M be the
total number of edges removed, we have M > 2m/ε. Let the
residual graph be B′. Among these M edges at most M/2 +
m are unnecessary, in other words, S (the optimal solution)
would have to remove at least M/2 − m edges. Therefore
the number of edges removed by S, denoted by R(B), is
then at least M/2 − m + R(B′′) where B′′ is the residual
graph after we removed these M/2 −m edges according to
S. Since in the approximation stage we have removed all walls

at those virtual edges, B′ is a subgraph of B′′. Hence we have
R(B′) ≤ R(B′′) and R(B) ≥M/2−m+R(B′). While in our
approximated solution the number of edges removed, denoted
by A(B), is exactly M + R(B′). Hence we have

A(B)
R(B)

≤ M + R(B′)
M/2−m + R(B′)

= 2 +
4m− 2R(B′)

M − 2m + 2R(B′)

≤ 2 +
4m

2m/ε− 2m
= 2 +

2ε

1− ε
≤ 2 + 3ε.

Now we show that the algorithm runs in polynomial time.
The preprocessing stage takes time O(|E||V1|). In the stage
when we call Exact-BiPP, since the cover numbers of all
virtual edges in V1 are bounded by 1

ε , by Lemma 1 the running
time is upper bounded by n

1
ε +log 1

ε +O(1). Therefore the total
running time is then O(|V1| 1ε +log 1

ε +O(1) + |E||V1|).
IV. FIXED PARAMETER TRACTABLE ALGORITHM FOR

OPTIMAL PLANARIZATION

In our extensive simulations, we observed that while pla-
narizing the subgraph induced by two adjacent layers, the
number of edges that need to be removed is usually much
smaller than the number of nodes in those two layers, for a
network of moderate density (average degree roughly between
6 and 12). If the network is very dense, we can use a simple
preprocessing operation to reduce the edge density to the mod-
erate level. (Details of the operation will be discussed later.)
Therefore a question remains: can we use that observation to
practically improve the planarization algorithm?

In recent years, a new approach called parameterized com-
putation has been proposed to solve NP hard problems by
exploiting small parameters [5]. Let k be a parameter in
a parameterized problem. We say that the problem is fixed
parameter tractable (FPT) if it can be solved optimally in time
O(f(k)nO(1)), where n is the input size and f(k) is a function
of k. When k is bounded, not only is the time complexity
polynomial, but it usually also grows much slower than O(nk)
when n increases. Quite a few NP-hard problems have been
proved to be in FPT with effective algorithms. For example,
the VERTEX COVER problem with parameter k as the cover
size can be solved in time O(1.286k +n3) [3]. The difference
between the approximation approach and a parameterized
approach is that the latter gives optimal solutions.

In [6], the authors showed that the BIPARTITE PLANARIZA-
TION problem (also called the ONE SIDED TWO-LAYER PLA-
NARIZATION problem) is fixed parameter tractable when the
parameter k is an upper bound for the number of edges
to be removed. They developed an FPT algorithm for the
problem running in time 3knO(1). In this section, we present
an improved FPT algorithm running in time (2 + γ)knO(1),
where γ can be an arbitrarily small positive number.

Formally, the parameterized version of the BIPARTITE PLA-
NARIZATION problem can be stated as follows:

Given an instance of the BIPARTITE PLANARIZA-
TION problem and a parameter k, either find a
solution to the instance that removes at most k edges,
or report that no such solution exists.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

Let us first define a few terms. Let u ∈ V1 be the leftmost
neighbor of a node z ∈ V2, and v ∈ V1 be the rightmost.
We call the pair of edges {u, z}, {z, v} an arc, and denote it
by z(u, v). We say that the arc z(u, v) conflicts with an edge
{w1, w2} if it is necessary to remove {w1, w2} in order to
keep both edges {z, u}, {z, v} in a solution. To help simplify
the following discussion, for each pair of arcs z(u, v), z′(u, v)
– i.e., they share the same leftmost and rightmost neighbors
u, v in V1 – we also consider {z, u} a conflict edge of z′(u, v).
Similarly {z′, u} is also a conflict edge of z(u, v).

The conflict number of an arc z(u, v) is the number of edges
that conflict with the arc. (See Figure 5 (a) for an illustration
of the terms.)

The conflict number of a given arc z(u, v) is simply the
summation of the following two numbers: (1) the number of
edges incident to nodes (exclusively) between u, v in V1 but
not z; (2) the number of arcs that of the forms z′(u, v) (where
z′ 	= z), i.e., they share the same leftmost (rightmost) node in
V1. The set of edges that are conflicting with a given arc can
also be decided easily by definition.

u v v’w qtu’

pz z’ z

u
e

......

......

v

s z’’

s t

(b)(a)

Fig. 5. (a) z(u, v) is an arc; the edges {p, q}, {s, t}, {z′′, u} conflict with
z(u, v); the conflict number of z(u, v) is then 3; z′(u′, v′) strictly covers
z(u, v) and has a larger conflict number 7. (b) cover number and conflict
number at virtual edge e(s, t): there are at least f − 1 edges incident to
nodes between u and s but not z.

The following lemma shows the relationship between cover
numbers and conflict numbers.

Lemma 2: If there is a virtual edge e in V1 with cover
number f , there must exist an arc that has conflict number
at least f − 1. In other words, if no arc has conflict number
larger than f−1, no virtual edge in V1 will have cover number
larger than f .

Proof: Suppose the leftmost walls of e are incident to u
in V1. Let z(u, v) be the arc such that v in V1 is the furthest
away to the right of u. Hence {z, u} is a leftmost wall of e
and v is the right-most neighbor of the cover nodes adjacent
to u. Each of the f − 1 cover nodes (other than z) of e either
is adjacent to u and has no neighbor exclusively to the right
of v, or has its leftmost wall exclusively to the right of u.
By definition, each of these f − 1 cover nodes (other than
z) of e will contribute at least 1 to z(u, v)’s conflict number.
Either their rightmost walls (if they are adjacent to u but not
v) or their leftmost walls will be conflict edges of z(u, v). The
conflict number of z(u, v) is, therefore, at least f − 1.

We present the FPT algorithm as Algorithm 3. The constant
β is any predefined positive number that is no smaller than 1.
The algorithm returns a solution if there exists a solution that
removes at most k edges, and returns false otherwise. (With
a little abuse of notations, when the algorithm returns true,

it returns the solution as well.) Note that when a solution is
found, the conflict number of every arc becomes 0.

Algorithm 3 FPT-BiPP (where β ≥ 1 is any given number)

Input: G(V1 ∪ V2, E), k
Output: Gplanar: A solution removing no more than k edges.

1: z(u, v)← the arc with the maximum conflict number c(z).
2: if c(z) = 0 then return true
3: if k < c(z) then return false
4: if c(z) ≤ β then
5: planarize G using the procedure Exact-BiPP. (That is,

run Exact-BiPP(G).)
6: if Exact-BiPP(G) removes at most k edges, return

true; else return false
7: end if
8: E(z)← the set of edges conflicting with z(u, v)
9: if FPT-BiPP(G(V1∪V2, E \E(z)), k−c(z)) return true;

10: if FPT-BiPP(G(V1∪V2, E\{{z, u}}), k−1) return true;
11: if FPT-BiPP(G(V1∪V2, E\{{z, v}}), k−1) return true;
12: return false

The following theorem proves the correctness and complex-
ity of the algorithm.

Theorem 2: The algorithm FPT-BiPP will either find a
solution for the BIPARTITE PLANARIZATION problem by re-
moving at most k edges, or correctly report that there is no
such solution. The running time of the algorithm is upper
bounded by (2 + 1

β)knβ+log β+O(1).
Proof: The correctness of the algorithm is straightfor-

ward. Let us look at the running time.
During the calling of the routine Exact-BiPP in line 5 (that

is, when c(z) ≤ β), since the conflict numbers of the nodes in
V1 are upper bounded by β, by Lemma 2, the cover number
of the virtual edges in V1 will be bounded by β +1. Again by
Lemma 1, the running time of Exact-BiPP in this algorithm
will be bounded by T1 = nβ+log β+O(1).

As for the recursive calls in lines 9, 10 and 11, we
branch into three cases where k decreases by 1, 1 and c(z),
respectively. Since we enter this stage only if c(z) > β, if
we use T (k) to denote the running time of the algorithm,
the following recurrence relationship holds for T (k): T (k) ≤
2T (k − 1) + T (k − β).

We use induction to show that T1(2+ 1
β)k is an upper bound

for T (k). In the case when k < c(z), we return false right
away. If c(z) ≤ k ≤ β, we already have T (k) ≤ T1. Hence
when k ≤ β, we always have T (k) ≤ T1(2 + 1

β)k.

Suppose for β ≤ k < t we have T (k) ≤ T1(2 + 1
β)k.

Using basic calculus, it is easy to verify that when β ≥ 1,
2(2 + 1

β)β−1 + 1 ≤ (2 + 1
β)β . Thus we have T (t) ≤ 2T (t−

1) + T (t − β) ≤ 2T1(2 + 1
β)t−1 + T1(2 + 1

β)t−β ≤ T1(2 +
1
β)t−β

[
2(2 + 1

β)β−1 + 1
]
≤ T1(2 + 1

β)t Therefore we have
proved that the running time of the algorithm is bounded by
(2 + 1

β)knβ+log β+O(1).
The exponential part of the running time of the algorithm

FPT-BiPP can be arbitrarily close to 2k by choosing a large

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

enough value for β.
Although the problem is NP-hard, the FPT algorithm solves

the problem in polynomial time when the parameter is small,
i.e., the exponential part of the running time is independent
of the number of the nodes in the input graph. As we will
show later in simulations, the number of edges to be removed
is actually very small (less than 15 in most cases for networks
of up to 2500 nodes) for networks with practical models.

V. IMPLEMENTATION AND SIMULATIONS

We conducted extensive simulations to test the performance
of the planarization method. The performance has been very
stable for different network models, sensor deployment meth-
ods, network sizes and sensor densities. In the following, we
present some typical simulation results. A planarized network
has numerous applications, including topology discovery, lo-
calization, geographic routing, etc. (For geographic routing,
embedding is needed and such embedding algorithms are
available [4], [8], [9], [16].) We illustrate the performance of
our result by showing its application to topology discovery. We
show that our planarized network can locate holes and outer
boundaries of the sensor fields very accurately, significantly
improving the known results on topology discovery.

Let us explain the distributed implementation of our pla-
narization method. The method utilizes a few shortest path
trees, and a practically limited amount of localized flooding to
refine the final result. (The total cost of the localized flooding
is about the same as flooding the network once or twice.) Both
building shortest path trees and localized flooding are very
mature techniques in networking. Both algorithms presented in
the paper planarize the network layer by layer, which naturally
corresponds to a distributed implementation. While planarizing
two adjacent layers, we take the simple approach of letting one
node in the two layers act as a proxy and run the algorithm
in a centralized way. (The nodes in the two layers can easily
send their information to the proxy node via the corresponding
shortest path tree.) We comment that our algorithms take the
divide and conquer approach, so it is simple to decentralize
its implementation.

The faces in the planarized network are always very clear
throughout the planarization process. That is because nodes
are planarized layer by layer, and the planarization algorithm
sorts the edges incident to each node by ordering the nodes in
the two adjacent layers. That makes the refinement step and
the topology discovery application of using faces to recognize
holes/boundaries very simple.

Our method works well for networks of moderate or sparse
edge densities. For dense networks (average degree 15 or
more), the following simple preprocessing approach can ef-
fectively reduce the edge density and edge crossing: for every
maximal clique in the network, we remove some edges from
it so that the remaining edges form a star. Note that the
average degree of a planar graph is always less than 6. So
such an edge-reduction preprocessing step goes along well
with planarization.

We have presented two planarization algorithms: an ap-
proximation algorithm and an FPT algorithm. They have very
similar performance in practice. Due to the space limitation,
we present the simulation results for the FPT algorithm only.
(The results for the approximation algorithm are very close.) In
most simulations, the optimal planarization solution removes
less than 15 edges for all the layers. So by setting k = 15 or a
little above, the FPT algorithm finds the optimal solution and
maintain a low time complexity at the same time.

A. Network Planarization

We randomly deploy N sensors uniformly randomly in a
15000 × 15000 square area. The network follows the quasi
unit disk graph (quasi-UDG) model: two nodes do not have
a link if their distance is greater than R, have a link if their
distance is less than r, and have a link with probability 1/3
if their distance is between r and R. (Here r ≤ R.) Let α =
R/r. When N and α are given, we adjust r and R to obtain
the desired average node degree. To make the sensor field
non-trivial, we also randomly place holes in the network. Our
reported results are for two holes of radius about 2R. For each
configuration, 1000 networks are generated and measured.

A typical planarization result is shown in Fig. 6. To quanti-
tatively analyze the performance of planarization, we measure
the stretch (str.) of hop distance and its standard deviation
σ. Let u, v be two nodes, whose hop distance is h(u, v)
before planarization and is h′(u, v) after planarization. The
multiplicative stretch is defined as h′(u, v)/h(u, v), and the
additive stretch is h′(u, v)−h(u, v). To better characterize the
stretch of different node pairs, we measure the multiplicative
stretch for nodes whose hop distance is greater than 1/4 of
the network diameter, and measure the additive stretch for the
others. The results are shown in Table I where d is the average
degree of the input networks, dp is the average degree of the
planar spanning subgraph found and D is the average diameter
of the input networks.

TABLE I
PLANARIZATION RESULTS FOR N = 1500

d=7 d=9 d=11
Additive stretch for nodes within Diameter/4 hops

α D str. σ D str. σ D str. σ
1 48.3 4.03 9.80 40.1 3.56 8.04 36.1 3.36 7.27
2 36.2 3.45 8.11 30.6 3.28 7.19 27.4 3.24 6.66
5 28.9 3.23 6.76 24.0 3.05 6.25 21.5 2.98 6.00
10 27.0 3.11 6.82 23.7 3.01 6.13 21.4 2.96 5.83

Multiplicative stretch for nodes more than Diameter/4 hops apart
α dp str. σ dp str. σ dp str. σ
1 3.5 1.27 0.57 3.8 1.28 0.56 3.8 1.30 0.57
2 3.7 1.31 0.54 3.8 1.35 0.56 3.9 1.38 0.58
5 3.7 1.36 0.55 3.8 1.40 0.55 3.8 1.43 0.56
10 3.7 1.36 0.54 3.8 1.40 0.55 3.8 1.43 0.57

We see that for networks of very different connectivity mod-
els and densities, the stretch is constantly small. This shows
that the planarized networks well preserved the connectivity
of the original networks.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

(a) (b)

Fig. 6. Wireless sensor network and its planarization. (a) The dark (green and black) edges are the planarized network. The light (grey) edges are the
remaining edges in the original network. The original network is a quasi-UDG with N = 2000 nodes and average degree 12, where transmission ranges vary
by as much as R/r = 5. (b) A plane embedding of the planarized network.

B. Topology Discovery

One important application of network planarization is topol-
ogy discovery [18] [8] [9]. In topology discovery, we use
the large faces in a planarized network to find holes and the
outer boundary of the sensor field. The importance of such
prominent features in sensor fields has been presented earlier
in the Introduction. Mainly, they help us learn about the sensor
field, detect obstacles and abnormal events, interpret the sensed
data, and balance routing load.

In our simulations, we place two circular holes of radius
2R in the sensor field, where the sensors cannot be deployed.
We comment that the actual holes are very irregular and look
far from circles, because of the random deployment of nodes
and the sparsity of edges. By checking large faces (whose
boundaries containing 20 edges or more), we are able to
identify the faces close to he boundaries of holes and the outer
boundary in more than 95% cases for all configurations.

Four typical results are shown in Fig. 7. To quantitatively
analyze the performance of topology discovery, we compare
the Euclidean length of the actual hole or outer boundary, l, to
the Euclidean length of the face, l′, surrounding it. Both l and
l′ are computed offline using real coordinates of the nodes.
(Note that the actual boundary consists of a set of fractional
segments of edges since edges can cross.) The results are
shown in Table II where σ is the standard deviation of l′/l
and m is the average of the total number of edges removed to
planarize both shortest path trees for each network.

We see that the length ratio is usually close to 1. This shows
the excellent performance of the results. Our results compare
favorably with the known results on topology discovery. In [8],
[9], [18], the authors presented very nice algorithms for
detecting holes and outer boundaries. Their algorithms work
for large holes (radius are 5 times the communication range

of the sensors or more) or very dense networks (e.g., average
degree larger than 15). In comparison, our method detects
holes whose radius are twice the communication range or
more, and works for both low and high densities. So the
improvement in performance is actually remarkable.

VI. CONCLUSION

In this paper, we present a new network planarization ap-
proach. It stably achieves very nice performance for different
network models, and has a very nice application to topology
control. In addition, the main planarization algorithms outper-
form existing theoretical results in the graph drawing area.
It remains as our future research to study planarization for
sensornets with mobile nodes and dynamic links.

REFERENCES

[1] L. BARRIERE, P. FRAIGNIAUD AND L. NARAYANAN, Robust position-
based routing in wireless ad hoc networks with unstable transmission
ranges, in Proc. DialM, pp. 19-27, 2001.

[2] J. BRUCK, J. GAO AND A. JIANG, Localization and routing in sensor
networks by local angle information, in Proc. MobiHoc, pp. 181-192,
2005.

[3] CHEN, IYAD A. KANJ, WEIJIA JIA, Vertex Cover: Further Observations
and Further Improvements, J. Algorithms 41(2), pp. 280-301, 2001.

[4] R. DAVIDSON AND D. HAREL, Drawing graphs nicely using simulated
annealing, in ACM Transactions on Graphics 15, pp. 301-331, 1996.

[5] R. DOWNEY AND M. FELLOWS, Parameterized Complexity, Springer-
Verlag, New York, 1999.

TABLE II
HOLE DETECTION RESULTS FOR N = 1500

d=7 d=9 d=11
α l′/l σ m l′/l σ m l′/l. σ m
1 1.02 0.06 4.8 1.15 0.31 9.5 1.20 0.05 14.6
2 1.13 0.05 6.4 1.22 0.04 10.1 1.29 0.19 13.2
5 1.37 0.26 8.9 1.43 0.46 11.2 1.50 0.16 11.2
10 1.41 0.82 8.5 1.48 0.49 9.9 1.42 0.46 12.2

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

(a) (b)

(c) (d)

Fig. 7. Typical hole detection results: green edges are those in the planarized network; black cycles are detected boundaries. (a) UDG network with N = 2000
nodes and average degree 8.14. (b) UDG network with N = 1500 nodes and average degree 12.72. (c) quasi-UDG network with N = 2500 nodes and
average degree 8.05, where the transmission ranges vary by as much as R/r = 10 times. (d) quasi-UDG network with N = 1500 nodes and average degree
12.05, where the transmission ranges vary by as much as R/r = 5 times.

[6] V. DUJMOVIC, M. FELLOWS, M. HALLETT, M. KITCHING, G. LI-
OTTA, C. MCCARTIN, N. NISHIMURA, P. RAGDE, F. ROSAMOND, AND

M. SUDERMAN, A fixed-parameter approach to two-layer planarization,
Proc. 9th International Symposium on Graph Drawing, pp. 1-15, 2001.

[7] P. EADES AND S. WHITESIDES, Drawing graphs in two layers,
Theoretical Computer Science 131, pp. 361-374, 1994.

[8] S. FUNKE AND C. KLEIN, Hole detection or: “How much geometry
hides in connectivity?”, in Proc. SCG, pp. 377-385, 2006.

[9] S. FUNKE AND N. MILOSAVLJEVIC, Network sketching or: “How much
geometry hides in connectivity?-Part II,” in Proc. SODA, 2007.

[10] D. GANESAN, B. KRISHNAMACHARI, A. WOO, D. CULLER, D. ES-
TRIN, AND S. WICKER, Complex behavior at scale: An experimen-
tal study of low-power wireless sensor networks, Technical Report
UCLA/CSD-TR 02-0013, UCLA, 2002.

[11] B. KARP AND H. KUNG, GPSR: Greedy perimeter stateless routing for
wireless networks, in Proc. MobiCom, pp. 243-254, 2000.

[12] Y.-J. KIM, R. GOVINDAN, B. KARP AND S. SHENKER, Geographic
routing made practical, in Proc. NSDI, 2005.

[13] E. KRANAKIS, H. SINGH, AND J. URRUTIA, Compass Routing on Geo-
metric Networks , in Proc. 11 th Canadian Conference on Computational
Geometry, 1999.

[14] F. KUHN, R. WATTENHOFER, AND A. ZOLLINGER, Worst-Case Opti-
mal and Average-Case Efficient Geometric Ad-Hoc Routing, in Proc.
MobiHoc, pp. 267-278, 2003

[15] D. MOORE, J. LEONARD, D. RUS, S. TELLER, Robust Distributed
Network Localization with Noisy Range Measurements, Proc. 2nd ACM
SenSys, pp. 50-61, 2004.

[16] S. NAKANO, Planar drawings of plane graphs, in IEICE Trans. Infor-
mation and Systems, vol. E00, no. 3, 2000.

[17] S. RATNASAMY, L. YIN, F. YU, D. ESTRIN, R. GOVINDAN, B. KARP,
S. SHENKER, GHT: A geographic hash table for data-centric storage,
Proc. WSNA, pp. 78-87, 2002.

[18] Y. WANG, J. GAO, AND J. S.B. MITCHELL, Boundary recognition in
sensor networks by topological methods, Proc. MobiCom, pp. 122-133,
2006.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

	Select a link below
	Return to Main Menu

