Noise Modeling and Capacity Analysis for NANS Flash Memories

Qing Li
Computer Sci. and Eng. Dept.
Texas A & M University
College Station, TX 77843
qingli@cse.tamu.edu

Anxiao (Andrew) Jiang
CSE and ECE Departments
Texas A & M University
College Station, TX 77843
ajiang@cse.tamu.edu

Erich F. Haratsch
Flash Components Division
LSI Corporation
San Jose, CA, 95131

Abstract—Flash memories have become a significant storage technology. However, they have various types of error mechanisms, which have drastically different characteristics from traditional communication channels. Understanding the error models is necessary for developing better coding schemes in the complex practical setting. This paper endeavors to survey the noise and disturbances in NAND flash memories, and construct channel models for them. The capacity of flash memory under these channel models is analyzed, particularly regarding capacity degradation with flash operations, the trade-off of sub-thresholds for soft cell-level information, and the importance of dynamic thresholds.

I. INTRODUCTION

Flash memories have become a significant storage technology, mainly due to their high speed, physical robustness and non-volatility. Various coding techniques have been developed for them, including codes for error correction [11], [17], rewriting [1], [16], rank modulation [10], etc. Despite their wide applications, flash memories are far from ideal. In particular, they have various reliability issues, some of which get more serious with each new generation of flash memories due to the scaling of flash cell sizes [5]. Flash memories have quite a few noise or disturb mechanisms, including retention errors, inter-cell interference, random noise, programming errors, read and write disturbs, and stuck cells [2], [4]. These mechanisms have quite different characteristics from traditional communication channels.

It is important to understand the channel models for the noise and disturbances in flash memories, in order to design better coding schemes in the complex practical setting. However, information-theoretical work on channel modeling for flash memories has been limited. This paper is an endeavor to survey the various noise and disturb mechanisms for NAND flash memories, and build their corresponding channel models. We analyze the capacity of flash memories under these models, and show how it evolves with read and write operations. While conventional storage media (e.g., magnetic and optical recording) typically have noise accumulated over time [12], in flash memories, significant noise accumulates with flash operations and causes the storage capacity to degrade. We also show that there is a trade-off for using sub-thresholds for obtaining more soft information on analog cell-levels due to read disturbs. Furthermore, as the noise in flash cell is highly correlated and not symmetric, it is important to use dynamic thresholds to achieve higher capacity.

The rest of the paper is organized as follows. In Section II, we introduce the fundamental concepts and operations in flash memories. In Section III, we model various types of noise and disturbances. In Section IV, we analyze the special features of storage capacity in flash memories. In Section V, we present concluding remarks.

II. FUNDAMENTAL CONCEPTS ON FLASHMEMORIES

In this section, we briefly survey the fundamental concepts on NAND flash memories, which are necessary for understanding the channel models of noise and disturbances.

A. Structure and operations of flash memory cell

A flash memory cell is a MOS transistor with a floating-gate layer. Its structure is illustrated in Fig. 1(a). We represent it with the simplified symbol in Fig. 1(b).

A flash cell stores data by storing charge in its floating-gate layer. The amount of charge affects its threshold voltage, which is a minimum required voltage added to CG to open the gate. When electrons are stored, the more electrons are trapped in the floating-gate layer, the higher the threshold voltage is. We call the analog value of a cell’s threshold voltage its analog level. In practice, a cell’s analog levels are quantized into discrete values to represent one or more bits. We denote the q discrete levels of a cell by level 0, 1, ⋯, q − 1. When q = 2, 4, 8, the flash memory cells are called SLC (Single-Level Cell), MLC (Multi-Level Cell)
and TLC (Triple-Level Cell), respectively. We illustrate a typical distribution of the analog levels of MLC in Fig. 2. A cell’s discrete level is read by comparing it to several reference levels. For q-level cells, $q - 1$ reference levels are needed. (The three reference levels for MLC are shown as dotted vertical lines in Fig. 2.) If more reference levels are used, more soft information about the analog levels can be obtained, which can be useful for coding schemes, but at the cost of longer read delays and more read disturbs.

There are three basic operations on a flash cell: read, write and erase. To read a cell’s level, a reference voltage is applied to its control gate to see if the gate opens or not. (When $q > 2$, multiple such reads with different reference voltages may be needed.) To write a cell (also called programming, which means to inject charge into a cell), the Fowler-Nordheim (FN) tunneling mechanism is used by applying a high voltage to the control gate. To erase a cell (which means to remove all stored charge from the cell), a high negative voltage is applied to the control gate. Some typical configurations of voltages applied to the four ends of a flash cell are shown in Fig. 3 for read, write and erase, respectively.

B. Structure and operations of flash-cell array

The cells in a flash memory are organized as (often tens of thousands or more) blocks, where every block is a two dimensional array. We illustrate a block in Fig. 4. There every vertical wire BL is called a bitline, and every horizontal wire WL is called a wordline. In addition, there are two horizontal wires BSL (Bitline Select Line) and GSL (Grounded Select Line). Each row of a page is called a page, which is the unit of read and write operations. A block usually has 32, 64 or more pages, and a page stores thousands of bits. An erase operation is applied to a whole block, and therefore called block erasure.

More specifically, the read, write and erase operations are performed as follows:

- **Read.** To read a page of cells, a positive voltage V_{read} is applied to the page’s corresponding WL (wordline). For the other pages, a higher voltage V_{pass} is applied to their WLs.

- **Write.** To write a page of cells (more specifically, a subset of the cells in the page), a high voltage V_{pgm} is applied to its corresponding WL. For the programmed cells in that page, their corresponding BLs are grounded; for the remaining cells, their corresponding BLs are set to a positive voltage V_{cc}. For the remaining pages, which are not programmed, a positive voltage V_{pass} is applied to their WLs.

- **Erase.** To erase a block, all the WLs are grounded, and a high positive voltage is applied to all the BLs.
TABLE I

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>Number of discrete levels of a cell</td>
</tr>
<tr>
<td>W</td>
<td>Number of WLs in a block</td>
</tr>
<tr>
<td>W_i</td>
<td>The i-th WL in a block</td>
</tr>
<tr>
<td>B</td>
<td>Number of BLs in a block</td>
</tr>
<tr>
<td>B_j</td>
<td>The j-th BL in a block</td>
</tr>
<tr>
<td>c_{i,j}</td>
<td>The cell in the i-th page (corresponding to the i-th WL W_i) and the j-th column (corresponding to the j-th BL B_j)</td>
</tr>
<tr>
<td>V_{i,j}(0)</td>
<td>The analog level of cell c_{i,j} right after it is programmed</td>
</tr>
<tr>
<td>V_{i,j}(t)</td>
<td>The analog level of cell c_{i,j} after time t has elapsed since it was programmed</td>
</tr>
<tr>
<td>V_{i,j}</td>
<td>A simplified notation of V_{i,j}(t)</td>
</tr>
<tr>
<td>V_i</td>
<td>The average analog level of the i-th discrete level</td>
</tr>
</tbody>
</table>

We illustrate the typical voltage configurations for read and write in Fig. 5 (a), (b), respectively.

III. CHANNEL MODELING FOR ERRORS IN FLASH MEMORIES

In this section, we survey the various noise and disturb mechanisms, and present channel models for them.

A. Overview of error models

In this subsection, we briefly overview the errors in flash memories. Their details will be introduced later. Throughout the paper, a number of notations will be used; for convenience, we summarize them in Table I.

The various types of noise and disturbs in flash memories include:

a **Inaccurate programming.** When cells are programmed, the analog levels they obtain usually deviate from the target level. Even for cells programmed the same way, their obtained analog levels are typically different due to cell heterogeneity, the difference in their original analog levels after the previous erasure operation and other reasons (e.g., inter-cell interference).

b **Retention error.** After cells are programmed, the charge stored in them leaks away gradually. When cells experience more program/erase (P/E) cycles, their quality degrades, and charge leakage becomes more serious.

c **Cell-to-cell interference.** There is coupling capacitance between adjacent cells. As a result, the analog level of a cell depends not only on its own storage charge, but also the charge in neighboring cells. For a cell c_{i,j}, the more charge its neighbors have, the higher its analog levels becomes due to the interference. The interference becomes particularly serious when the neighbors of c_{i,j} are programmed after c_{i,j} itself because that makes it impossible to program c_{i,j} adaptively.

d **Read disturb.** When the i-th page is read, the other pages are unintentionally and weakly programmed.
because of the positive voltage V_{pass} applied to their wordlines, making their analog levels higher.

Program disturb. When a page is programmed, – more specifically, when a subset of the cells in that page are programmed, – the other cells in that page are unintentionally and weakly programmed because of the voltage difference between their control gates and P-substrates, making their analog levels higher.

Pass disturb. When a page is programmed, the other pages are unintentionally and weakly programmed because of the positive voltage V_{pass} applied to their wordlines.

Flash memory cells also have random noise and stuck-at errors. The latter is caused by the degradation of cell quality, which makes it impossible to change the levels of stuck-at cells.

In the following, we analyze the errors in more detail, and present information-theoretic models.

B. Inaccurate programming

For cells of q levels, for $k = 0, 1, \ldots, q - 1$, when we program a cell to the k-th level (for $k = 0$ it is actually the erasure state), let V_k denote the target analog level. For a cell $c_{i,j}$ programmed to the k-th level, let $V_{i,j}(0)$ denote its actual programmed analog level. We call

$$Z_k = V_{i,j}(0) - V_k, \quad (1)$$

the programming noise. For simplicity, we assume $Z_k \sim \mathcal{N}(0, \sigma_k)$ has a Gaussian distribution. Similar bell-shape models have appeared in [3], [14].

C. Retention error

It is reported in [7] that the number of leaked electrons depends on the leaking time t and the initial number of electrons $n(0)$. The number of electrons at time t, $n(t)$, can be modeled as $n(t) = n(0)e^{-vt}$, where v is a constant parameter. This parameter v can vary for cells. So for cell $c_{i,j}$, we use $v_{i,j}$ to denote its corresponding value of v.

Note that the number of leaked electrons does not always strictly follow the above smooth function. Therefore, we use an additive noise Z_{re} to denote the corresponding noise term. Based on the linear relationship between the analog level and the number of electrons in the cell’s FG (see [5] for details), we model $V_{i,j}(t)$ – the analog level of cell $c_{i,j}$ after time t has elapsed since it was programmed – as

$$V_{i,j}(t) = V_{i,j}(0)e^{-v_{i,j}t} + Z_{\text{re}}. \quad (2)$$

For simplicity, we assume $Z_{\text{re}} \sim \mathcal{N}(0, \sigma_{\text{re}})$ has a Gaussian distribution.

D. Cell-to-cell interference

Cell-to-cell interference is a complex issue for flash memories. The analog level we can read from a cell depends not only on the cell’s own level, but also the levels of its neighboring cells. This is due to the parasitic capacitance-coupling effect between neighboring cells. For this reason, we differentiate the concept of intrinsic analog level from the extrinsic analog level of a cell. By intrinsic (respectively, extrinsic) analog level, we refer to the cell’s analog level when there is no (respectively, there is) interference from neighboring cells. For cell $c_{i,j}$, we use $\hat{V}_{i,j}$ to denote its intrinsic analog level, and use $V_{i,j}$ to denote its extrinsic analog level.

A model for cell-to-cell interference is proposed in [3], where a cell is interfered by its eight neighboring cells, as shown in Fig. 6. Here B_x, B_y and B_{xy} refer to coupling parameters between neighboring cells in the row direction, the column direction and the diagonal direction, respectively. We model the effect of cell-to-cell interference as

$$V_{i,j} = \hat{V}_{i,j} + B_x(\hat{V}_{i,j-1} + \hat{V}_{i,j+1}) + B_y(\hat{V}_{i-1,j} + \hat{V}_{i+1,j}) + B_{xy}(\hat{V}_{i-1,j-1} + \hat{V}_{i-1,j+1} + \hat{V}_{i+1,j-1} + \hat{V}_{i+1,j+1}) + Z_{\text{inter}}, \quad (3)$$

where the noise Z_{inter} accounts for the possible deviation from the above linear model. For simplicity, we assume $Z_{\text{inter}} \sim \mathcal{N}(0, \sigma_{\text{inter}})$.

For two neighboring cells A and B, if A is programmed before B, when B is programmed, the interference from A can be compensated by programming because the readable level of cell B is already its extrinsic analog level.

E. Read disturb

When the k-th page is read (for $k \in \{0, 1, \ldots, W - 1\}$), the other pages are softly programmed due to
the voltage \(V_{\text{pass}} \) added on their control gates. For a disturbed cell \(c_{i,j} \) (for \(i \in \{0, 1, \cdots, W-1\} \) and \(j \in \{0, 1, \cdots, B-1\} \)), we denote its analog level before the read disturb by \(V_{i,j} \), and denote that after the read disturb by \(V'_{i,j} \). We model read disturb as

\[
V'_{i,j} = V_{i,j} + \gamma_{i,j} + Z_{\text{rd}},
\]

where \(\gamma_{i,j} \) is a parameter that depends on the time interval for the read operation, the strength of the electrical field between cell \(c_{i,j} \)'s control gate and P-substrate, and the cell's capacitance; and the noise \(Z_{\text{rd}} \) accounts for the possible deviation from the above simple linear model. For simplicity, we assume \(Z_{\text{rd}} \sim \mathcal{N}(0, \sigma_{\text{rd}}) \) has a Gaussian distribution.

\subsection{F. Program disturb}

When the \(i \)-th page is programmed (for \(i \in \{0, 1, \cdots, W-1\} \)), let \(S \subseteq \{0, 1, \cdots, B-1\} \) denote the indices of those programmed cells in that page. The unprogrammed cells in that page, which have indices in \(\{0, 1, \cdots, B-1\} - S \), will be softly programmed, which is called program disturb. For a disturbed cell \(c_{i,j} \) (for \(j \in \{0, 1, \cdots, B-1\} - S \)), we denote its analog level before the program disturb by \(V_{i,j} \), and denote that after the program disturb by \(V'_{i,j} \). We model program disturb as

\[
V'_{i,j} = V_{i,j} + \gamma_{i,j}^{\text{prod}} + Z_{\text{prod}},
\]

where \(\gamma_{i,j}^{\text{prod}} \) has a similar meaning as in function (4) (although it may have a different value due to changed parameters such as the time interval for programming). Here the noise \(Z_{\text{prod}} \) accounts for the possible deviation from the above simple linear model. For simplicity, we assume \(Z_{\text{prod}} \sim \mathcal{N}(0, \sigma_{\text{prod}}) \) has a Gaussian distribution.

\subsection{G. Pass disturb}

When the \(k \)-th page is programmed, the other pages are softly programmed due to the voltage \(V_{\text{pass}} \) added on their control gates. The process is similar to read disturb, and we model it as

\[
V'_{i,j} = V_{i,j} + \gamma_{i,j}^{\text{pasd}} + Z_{\text{pasd}},
\]

where \(\gamma_{i,j}^{\text{pasd}} \) has a similar meaning as in function (4) (but with different possible values, as for program disturb). And as before, \(Z_{\text{pasd}} \) accounts for the additive noise term, and for simplicity we assume \(Z_{\text{pasd}} \sim \mathcal{N}(0, \sigma_{\text{pasd}}) \).

\section{IV. Capacity Analysis for Flash Memories}

In this section, we analyze the storage capacity of flash memories. In particular, we focus on its special features: how the storage capacity degrades with flash operations, the trade-off between instantaneous capacity and read disturbs when sub-thresholds are used, and the importance of dynamic thresholds.

\subsection{A. Basic model for write and read operations}

The storage capacity of flash cells is affected by a number of factors, including the number of cell levels, the specific implementation of read and write operations, etc. In this section, we focus on fundamental features of flash channels. So for simplicity, we consider the following simplistic write/read model for an SLC block of \(W \) pages. We first program the \(W \) pages sequentially from \(V_0 \) to \(V_{W-1} \), and we assume every cell has an equal likelihood of being programmed to 0 or 1. We then have \(n - 1 \) rounds of reading; in each round, we read the pages \(V_0, V_1, \cdots, V_{W-1} \) sequentially. Although the noise in cells is correlated (e.g., via inter-cell interference), when we compute capacity, we treat them as having independent noise. (This is, of course, a restrictive model for capacity.) Furthermore, when we analyze capacity, we assume \(B \) (the number of cells in a page) approaches infinity.

The above simple model for SLC can be extended to MLC and TLC and to more complex read/write patterns. However, the basic observations derived here still hold for more general cases.

\subsection{B. Capacity degradation with flash operations}

In conventional storage media such as hard disk, noise typically accumulates over time. In flash memories, however, significant noise is accumulated due to flash operations. So frequent operations will lead to large noise, thus degrade the storage capacity significantly. In this subsection, we analyze how the analog-level distribution of cells changes with more and more write/read operations (under the model introduced earlier), and compute the corresponding storage capacity. (Note that P/E cycles degrade cells' quality, which is another source of capacity degradation, but we do not consider it here.)

We assume that the \(W \) writes and \((n-1)W\) reads in our model happen at time \(0, 1, \cdots, W-1, W+1, \cdots, (n-1)W-1 \), respectively. So for the \(i \)-th page \(V_i \), it was programmed at time \(i \) and was read at time \(i + W, i + 2W, \cdots, i + (n-1)W \). For a cell \(c_{i,j} \), which is intended to be programmed to \(V_{k} \in \{V_0, V_1\} \), let \(V_{i,j}(k, t) \) be the analog level of \(c_{i,j} \) after the \(t \)-th operation. We first present the recursive formula for \(V_{i,j}(0, t) \).
When \(\cdot \) read disturb from \(W \) and \(t < i \), \(V_{i,j}(0,t) = V_{i,j}(0,t-1) + Z_{\text{prod}} \) when \(t = i \), \(V_{i,j}(k,t-1) + B_y V_{i+1,j}(k_1,t) \) is distorted by pass disturb from \(\gamma_{i,j} + Z_{\text{prod}} \) otherwise. Thus, we know that \(V_{i,j}(1,1) = V_1 + Z_1 \) due to the inaccurate programming.

We conclude the above as follows:

\[
V_{i,j}(0,t) = \begin{cases}
V_0 + Z_0 & t < i, \\
V_{i,j}(k,t-1) + Z_{\text{prod}} & t = i, \\
V_{i,j}(k,t-1) + B_y V_{i+1,j}(k_1,t) + B_{xy} (V_{i+1,j-1}(k_2,t) + V_{i+1,j+1}(k_3,t)) + Z_{\text{int}} + \gamma_{i,j} + Z_{\text{prod}} & t = i + 1, \\
V_{i,j}(k,t-1) + \gamma_{i,j} + Z_{\text{prod}} & t \in [i + 2, W - 1], \\
V_{i,j}(k,t-1) = W + mi, \\
V_{i,j}(k,t-1) + \gamma_{i,j} + Z_{\text{prod}} & \text{otherwise.}
\end{cases}
\]

The formula for \(V_{i,j}(1,t) \) can be obtained similarly with the only difference that \(V_{i,j}(1,1) = V_1 + Z_1 \) due to the inaccurate programming. Therefore, we know that \(V_{i,j}(1,1) = V_1 + Z_1 \) and \(V_{i,j}(0,t) = V_0 + Z_0 + Z_{\text{prod}} \).

Furthermore, \(V_{i,j}(k,t) \) (for \(t = 0, 1, \cdots \)) form a Markov chain.

In order to obtain the probability distribution for \(V_{i,j}(k,t) \), we make the following assumptions for simplicity: for cell-to-cell interference, \(B_{xy} \) is negligible compared to \(B_y \); given any \(i \) and \(j \), \(\gamma_{i,j} \) and \(\gamma_{i,j} \) are constant over time, so they have no effect on \(V_{i,j}(k,t) \)’s probability distribution; \(V_{i,j}(k,t) \) is independent of \(j \); and we write it as \(V_{i,j}(k,t) \) sometimes. Thus, \(V_{i,j}(0,t) \sim N(V_0(1 + B_y), \sigma_0(0,t)) \) or \(V_{i,j}(0,t) \sim N(V_0 + B_y V_{i+1}, \sigma_0(0,t)) \) with equal probability, where

\[
\sigma_0^2(0,t) = \begin{cases}
\sigma_0^2(0,t-1) + \sigma_{\text{prod}}^2 & t < i, \\
\sigma_0^2(0,t-1) + (B_y \sigma_{i,j}(k,t))^2 & t = i, \\
\sigma_0^2(0,t-1) + \sigma_{\text{prod}}^2 + \sigma_{\text{int}}^2 & t = i + 1, k \in \{0, 1\}, \\
\sigma_0^2(0,t-1) + \sigma_{\text{prod}}^2 + \sigma_{\text{int}}^2 & t \in [i + 2, W - 1], \\
\sigma_0^2(0,t-1) + \sigma_{\text{prod}}^2 & t = W + mi, \\
\sigma_0^2(0,t-1) + \sigma_{\text{prod}}^2 & \text{otherwise.}
\end{cases}
\]

Suppose the reference voltage for reading (that separates the two levels) is \(V_r \). Also suppose \(c_{i,j} \) represents 1 if \(V_{i,j}(k,t) > V_r \) and 0 otherwise (see Fig. 7 (a)). \(P^t(Y|X) \) \(\{Y, X \in \{0, 1\}\} \) is the probability that \(c_{i,j} \) (which is intended to be programmed to \(V_X \in \{V_0, V_1\} \)) represents data \(Y \) after \(t \) operations. Thus,

\[
P^t(1|0) = \frac{1}{2} \int_0^{\infty} \left(\frac{Q(V_r - V_0(1 + B_y)) + Q(V_r - (V_0 + B_y V_{i+1}))}{\sigma_0(0,t)} \right) dt
\]

where \(Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^{+\infty} e^{-t^2/2} dt \).

With a similar process and assumptions as above, we obtain that \(V_{i,j}(1,1) \sim N(V_0, \sigma_0) \) when \(t < i \).
\(V_{i,j}(1,t) \sim \mathcal{N}(V_1 + B_y \sigma_i(1,t)) \) or \(V_{i,j}(1,t) \sim \mathcal{N}(V_1 + B_y V_0, \sigma_i(1,t)) \) with equal probability when \(t \geq i \), where \(\sigma^2_i(1,t) = \)

\[
\begin{align*}
\sigma^2_i(1,t) &= (B_y \sigma_{i+1}(k,t))^2 & t = i, \\
\sigma^2_i(1,t) &= \sigma^2_{\text{pasd}} + \sigma^2_{\text{inter}} & t = i + 1, k \in \{0,1\}, \\
\sigma^2_i(1,t) &= \sigma^2_{\text{pasd}} + \sigma^2_{\text{rd}} + \sigma^2_{\text{rd}} & t \in [i+2, W-1], \\
\sigma^2_i(1,t) &= \sigma^2_{\text{rd}} + \sigma^2_{\text{rd}} & t = W + mi, \\
\sigma^2_i(1,t) &= \sigma^2_{\text{rd}} & \text{otherwise}.
\end{align*}
\]

\(P^t(0|1) = \)

\[
\begin{align*}
1 - Q\left(\frac{V_r - V_0}{\sigma_{\text{rd}}}\right) & \quad t < i, \\
1 - \frac{1}{2}Q\left(\frac{V_r - V_0}{\sigma_1(1,t)}\right) + Q\left(\frac{V_r - (V_1 + B_y V_0)}{\sigma_1(1,t)}\right) & \quad t \geq i.
\end{align*}
\]

Let \(\mathcal{X} = \mathcal{Y} = \{0,1\} \), and our channel model is \(\mathbb{P} = (\mathcal{X}, \mathcal{Y}, P^t(Y|X)) \). An example is presented in Fig. 8(a).

Thus, the capacity of \(\mathcal{W}_i \) after the\(t \)-th operation is

\[
C_i(t) = I(X;Y) = H(X) - H(X|Y),
\]

\[
= 1 - H(X|Y),
\]

\[
= 1 - \frac{1}{2} \sum_{X,Y \in \{0,1\}} P^t(Y|X) \log_2 \frac{P^t(Y|X)}{\sum_X P^t(Y|X)}
\]

where equation (12) is based on the assumption that \(X \) is uniformly distributed over \(\{0,1\} \). Due to data-processing inequality [6, chapter 2], we conclude that \(C_i(t + 1) \leq C_i(t) \) for \(t \in \mathbb{N} \).

Let \(V_r \) be 1.4 and the remaining parameters be fixed values in Table II. We numerically calculate \(C_2(t) \) for \(t = 0, 1, \ldots, 127 \) as shown by the solid line of Fig. 9(a) and (b). We can clearly see that the storage capacity \(C_2(t) \) decreases with more and more operations.

C. The impact of sub-threshold for flash capacity

Recently, the usage of sub-thresholds (e.g., [8], [9], [13]) in flash memories has attracted great research interest. With sub-thresholds, there are multiple reference voltages between adjacent discrete levels (e.g., in Fig. 7(b) there are three reference voltages \(V_{r_0}, V_{r_1}, V_{r_2} \) between two adjacent cell level distributions). The purpose of sub-thresholds is to obtain more soft information on cell levels, and improve coding performance (e.g., for LDPC codes). However, we observe that there is also a trade-off. Sub-thresholds lead to more reads, and therefore causes more read disturbs. Although having sub-thresholds can increase the precision of reading at the moment, the additional noise caused by read disturbs also distorts cell levels and is accumulated for future reading. Therefore, there is an optimal way to...
set sub-thresholds to maximize capacity over the flash memory’s lifetime (which is not necessarily the more sub-thresholds the better).

In this subsection, we explore the impact of sub-thresholds for flash capacity, focusing on the trade-off between read precision and read disturbs. (How to set the positions of sub-thresholds is beyond the scope of this paper, and there is already a significant body of work on it [8], [9], [13]) Consider SLC, for \(l = 1, 3, 5, \ldots \), let \(\mathcal{V}(l) = \{V_{0}, V_{1}, \ldots, V_{l-1}\} \) denote the set of \(l \) sub-thresholds we use for separating discrete level 0 from level 1. Let \(V_r \) be the single sub-threshold when \(l = 1 \). We require the sub-thresholds in \(\mathcal{V}(l) \) be symmetric with respect to \(V_r \); we also require \(\mathcal{V}(l-1) \subset \mathcal{V}(l) \) so that more soft information can be obtained with more sub-thresholds (if no read disturb is considered). Specifically, we make all the sub-thresholds fall in the region \([V_0 + \frac{1}{2}(1+B_y)], V_1 + \frac{1}{2}(1+B_y)] \). Let \(L \) be the maximum number of sub-thresholds used. Let
\[
\delta = \frac{V_1 - V_0}{2L}.
\]
We set \(\mathcal{V}(l-1) \) as \(\{V_{r_k} = V_r - \lfloor \frac{l}{2} \rfloor - k \delta \}_{k=0,1,\ldots,l-2} \).

An SLC with \(l \) sub-thresholds can be modeled by a 2-input (\(l+1 \))-output channel, where the \((l+1) \) outputs–0, 1, \ldots, \(l \)–corresponds to \(l+1 \) regions separated by the \(l \) sub-thresholds. Let \(\mathcal{X} = \{0, 1\}, \mathcal{Y} = \{0, 1, \ldots, l\} \), and \(P^d(Y|X) \) (\(X \in \mathcal{X}, Y \in \mathcal{Y} \)) be the probability that \(c_{i,j} \) (which is intended to be programmed to \(V_{X_i} \in [V_0, V_1] \)) is read as \(Y \in \mathcal{Y} \) after \(t \) operations. \(P^d(Y|X) \) can be obtained in a similar way as before. (With the same setting and the similar analysis of the previous subsection, we obtain that \(V_{i,j}(k, t) = V_{i,j}(k, t-1) + \gamma_{i,j} + t + X_{i,d} \) when it is suffered from read disturbs. The remaining cases of \(V_{i,j}(k, t) \) are the same as those of the previous subsection.) Our proposed channel model is \(\mathbb{P}^m = (\mathcal{X}, \mathcal{Y}, \mathbb{P}^d(Y|X)) \). Fig. 8(b) presents an illustration of the channel model with three sub-thresholds.

Let the capacity of the \(i \)-th page \(\mathcal{W}_i \) (with \(l \) sub-thresholds) after \(t \) write/read operations be \(C_i(t, l) = I(X; Y) \). With parameters listed in Table 1 except \(\sigma_0^2 = \sigma_i^2 = 1 \), we present \(C_2(l, 500) \) for different \(l \) in Fig. 9(c). (The capacity for other values of \(i \) and \(t \) has similar shapes.) As shown in Fig. 9(c), there is a trade-off between the number of sub-thresholds and storage capacity. When there are too many sub-thresholds, the impact of read disturbs becomes dominant, and the corresponding capacity decreases.

D. Dynamically adjust reference threshold voltages

It can be seen from the error models that flash disturbs are highly correlated (both in time and space), and the noise has a tendency to be non-symmetric (e.g., disturbs tend to increase cell levels). Therefore, it is important to set reference voltages adaptively over time to reduce errors and maximize capacity. Such a scheme is called dynamic threshold, and has been studied before [15], [18]. In this subsection, we study how dynamic thresholds can help improve storage capacity based on our flash models.

Let \(V_r(t) \) be the reference voltage we adaptively choose for the \(t \)-th operation. Let \(ER_k(t) \) denote the error probability of quantizing \(V_r(k, t) \) (for simplicity, we assume \(t \geq i \)). Therefore \(ER_k(t) = \)
\[
\begin{align*}
\frac{1}{2}(Q(V_r(t) - V_0(1+B_y)) + Q(V_r(t) - V_1(1+B_y))) & \quad k = 0, \\
1 - \frac{1}{2}(Q(V_r(t) - V_1(1+B_y)) + Q(V_r(t) - (V_0 + B_yV_r))) & \quad k = 1.
\end{align*}
\]

Assume that \(k \) is uniformly distributed over \(\{0, 1\} \). Thus the total quantizing error probability for the \(t \)-th operation is \(TErr(t) = \frac{1}{2} + \frac{1}{2}B_y \). From Fig. 8(a) and (b). We can see that after dynamically adjusting the reference voltages, the channel (with quantization) becomes less noisy and the storage capacity increases correspondingly.

V. CONCLUDING REMARKS

In this paper, we explore various noise and disturb mechanisms in NAND flash memories, and build their corresponding information-theoretic channel models. We further study the storage capacity of flash memory under these channels. In particular, we show the impact of read/write operations on flash capacity, as well as the intriguing effect of sub-thresholds and dynamic thresholds. It is important to design coding schemes adaptively corresponding to the special properties of flash memories. That remains as our future work.
VI. ACKNOWLEDGMENT

This work was partially supported by the University Research Program of LSI Corporation.

REFERENCES

