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Abstract—Memories whose storage cells transit irreversibly be-
tween states have been common since the start of the data storage
technology. In recent years, flash memories have become a very
important family of such memories. A flash memory cell has �

states—state �� �� � � � � � � �—and can only transit from a lower
state to a higher state before the expensive erasure operation takes
place. We study rewriting codes that enable the data stored in a
group of cells to be rewritten by only shifting the cells to higher
states. Since the considered state transitions are irreversible, the
number of rewrites is bounded. Our objective is to maximize the
number of times the data can be rewritten. We focus on the joint
storage of data in flash memories, and study two rewriting codes
for two different scenarios. The first code, called floating code, is for
the joint storage of multiple variables, where every rewrite changes
one variable. The second code, called buffer code, is for remem-
bering the most recent data in a data stream. Many of the codes
presented here are either optimal or asymptotically optimal. We
also present bounds to the performance of general codes. The re-
sults show that rewriting codes can integrate a flash memory’s
rewriting capabilities for different variables to a high degree.

Index Terms—Coding theory, data storage, flash memory.

I. INTRODUCTION

M EMORIES whose storage cells transit irreversibly be-
tween states have been common since the beginning of

the data storage technology. Examples include punch cards and
digital optical discs, where a cell can change from a 0-state to
a 1-state but not vice versa. In recent years, flash memories and
some other nonvolatile EEPROM’s based on floating-gate cells
have become a very important family of such memories. They
have good properties including high data density, fast reading
speed, physical robustness, etc., and have been widely used in
mobile, embedded as well as mass storage devices.

We use flash memories as a typical example to explain the
basic storage mechanisms of floating-gate cells. A flash memory
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consists of floating-gate cells as its basic storage elements. In
some flash memories, a cell has two states and is called a single-
level cell (SLC); but to increase data density, multilevel cells
(MLCs)—where a cell has 4 to 16 or even more states—are
being actively developed. For a cell with states, we denote its
states by .

To write (i.e., program) a cell, the hot-electron injection
mechanism or the Fowler-Nordheim tunneling mechanism
is used to inject charge (e.g., electrons) into the cell, where
the charge is trapped [4]. The amount of charge trapped in
a cell determines the threshold voltage of the cell: the more
trapped charge, the higher the threshold voltage. The amount of
trapped charge is made to concentrate around discrete levels,
corresponding to the cell states. The state of a cell can be read
by measuring the threshold voltage. Programming and reading
cells are fast; however, rewriting data is much more complex.
Most of the time, it requires moving cells to lower states for
rewriting data, which means to remove charge from the cells. In
flash memories, cells are organized as blocks. A typical block
stores 64 to 256 kilobytes of data. Due to circuit complexity
reasons, to rewrite, first the whole block has to be erased (which
means to lower all the cells of the block to the 0-state), then all
the cells are reprogrammed. This happens even if only one cell
really needs to lower its state for the rewriting, and it leads to
a rewriting speed substantially slower than reading. Therefore,
it will be very beneficial to design codes for storing data such
that the data can be rewritten many times before the block has
to be erased. Reducing the number of block erasure operations
is critical not only for improving rewriting speed, but also
for the flash memory’s longevity. Every erasure reduces the
quality of the cells, and currently, a flash memory’s lifetime is
bounded by about program-erase cycles. Although
technically speaking, a cell can return to a lower state through
block erasures, in this paper, we are interested in the writing
and rewriting of data between two block erasure operations. In
that period, the cells can only go from lower states to higher
states.

We model the memory introduced above with the following
Write Asymmetric Memory (WAM) model. A WAM consists of

cells, where each cell has states: state . Such a
cell is called a -ary cell. A cell can change from state to state

if and only if .
WAM is a straightforward generalization of the Write Once

Memory (WOM) model, firstly introduced by Rivest and Shamir
in their seminal paper [25], where . It is also a special
case of the Generalized WOM model [7], where the state tran-
sition diagram of a cell can be any directed acyclic graph. WAM
models the NOR flash memories well, where the cells in every
block can be individually programmed [4]. NOR flash memories
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Fig. 1. Three optimal floating codes for storing two binary variables in � cells of � states. (a) � � �. (b) � � �. (c) � � �.

are widely used for code storage, RFIDs, etc. There is a second
family of popular flash memories, called NAND flash memo-
ries, which allow every page of cells (a portion of a block) to
be programmed at most a few times (called partial writing of
pages) between two erasures [4]. The rewriting codes for WAM
have the potential to help NAND flash memories achieve a better
balance between the capability to update data and the storage ca-
pacity, which can be useful in many applications.

There has been substantial research on WOM codes, where
a single variable is stored in a WOM, and the code enables the
variable to be rewritten numerous times. In practice, a memory
stores many—let’s say —variables. A simple approach to use
WOM codes in a memory is to partition it into parts, where
each part stores a variable independently. This simple approach,
however, has a serious limitation. If the sequence of rewriting
is very nonuniform across the variables, which is common in
many applications, the WAM will be unusable soon because its
longevity is determined by the most frequently rewritten vari-
able. Therefore, it will be beneficial to integrate the rewriting
capabilities of the variables, so that they can be rewritten many
times regardless of what the rewriting sequence is. As we will
show in this paper, such an integration is feasible, often to a high
degree. We call this approach the joint storage of data in WAM.

In this paper, we study two types of rewriting codes for two
different scenarios. The objective of both codes is to maximize
the number of rewrites. The first code, called floating code, is

for the joint storage of multiple variables, where every rewrite
changes one variable. We show an example in Fig. 1, where
two binary variables (bits) are stored in cells of states. The

numbers inside each circle are the states of the cells, and
the two numbers beside it are the two variables. The directed
edges show how the cell states change with rewrites. For ex-
ample, when , if the rewrites change the two binary vari-
ables as , the three
cells’ states can change as

The codes in Fig. 1 support
rewrites even in the worst case. It will be shown later that

they are optimal.
The second code, called buffer code, is for remembering

the most recent values of a changing variable. Let be a
variable with alphabet , whose value is
changed by rewrites as over time.
Let be an integer. The buffer code uses cells of
states to remember the most recent values of . That is,
when the variable is rewritten as , the buffer code records
the vector . (By convention, we let

if .) In other words, the buffer code remembers
the most recent values in a data stream. Buffer codes can
be used to record logged data in file/database systems, to
checkpoint states, or to work as a buffer for data streaming
applications. We show an example in Fig. 2, where the
recent values of a binary variable are stored in an 8-ary
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Fig. 2. Three buffer codes with parameters � � �, � � �, and � � �. (a) � � �. (b) � � �. (c) � � �.

cell. Suppose and the binary variable changes as
, which means the recent

values change as .
By Fig. 2(b), we see that the cell’s state can change as

. It will be shown that the codes in Fig. 2
can be generalized to support rewrites when the

recent values of a binary variable are stored in a -ary cell.
Buffer codes with more cells will also be presented.

The rest of the paper is organized as follows. Section II
presents an overview of the related work. Section III defines
the floating code and presents bounds for its rewriting perfor-
mance. Section IV presents a set of constructions for floating
codes. Section V studies the buffer code. Section VI shows the
conclusions.

II. OVERVIEW OF RELATED WORK

WOM was first studied by Rivest and Shamir in their orig-
inal work [25], where a single variable is stored in a WOM and
needs to be updated multiple times. In a WOM, the cells’ states
can change from 0 to 1 but not in the reverse way. This memory
model was later generalized in [7] and [9], where every cell can
have multiple states, and the irreversable state transition can be
characterized by a directed acyclic graph. The optimization ob-
jective of WOM codes is to find the best tradeoff between the
storage capacity and the rewriting capability. Several bounds on
WOM code performance have been derived in [7], [9], [12],
[20], [25], [28], and a number of WOM codes have been de-
signed, including linear codes, tabular codes, and several other
codes in [25], linear codes in [7], a code construction based on
projective geometries in [23], a coset coding method in [5], and
error-correcting WOM codes in [31].

The study on constrained memories can be further traced back
to coding for defective memories, including the original work by
Kuznetsov and Tsybakov [19] and papers [13], [20]. In a defec-
tive memory, a defective cell gets stuck at a state and becomes
unchangable. More constrained memory models include write
unidirectional memory (WUM) [24], [26], [27] and write effi-
cient memory (WEM) [1], [2], [10]. In a WUM [26], [27], each
rewrite can change the cells either from 0 to 1 or from 1 to 0,
but not both. In a WEM [2], every state transition of a cell is
associated with a certain cost.

The floating codes and buffer codes studied in this paper gen-
eralize the previous study on constrained memories by using
the joint storage of data variables. The focus is on the funda-
mental tradeoff between rewriting and storage capacities when

both memories and data change in constrained ways. After their
introduction in [3], [14], the study on floating and buffer codes
has been continued by [8], [15], [17], [22], [29], [30], etc. In
[8], [17], the design of floating codes with good expected per-
formance was studied. In [17], the rewriting model for data was
further generalized using directed graphs of bounded degrees.

A commonly used technique to deal with block erasures in
flash memories is wear leveling [11], which means to balance
the erasures for blocks by moving data around. Compared to
wear leveling, the strength of rewriting codes is that they can
truly minimize the total number of erasures, not just balancing
them for blocks. Rewriting codes have also been studied for
other new memory technologies, such as phase-change mem-
ories [21], and for new memory storage schemes, such as rank
modulation [18].

III. DEFINITION AND BOUNDS FOR FLOATING CODES

In this section, we define floating codes, and present bounds
for their rewriting performance. We also present an optimal code
for two binary variables.

A. Definition

We formally define the problem we study as follows. vari-
ables are stored in a WAM, where each variable takes its value
from an alphabet of size . The WAM has

-ary cells. The states of a cell are also called levels: from
level 0 to level . Initially, all the cells are at level 0, and
all the variables have the default value 0. Each rewrite updates
the value of one variable. We use —which we
call the variable vector—to denote the values of the variables,
where . We use —which
we call the cell-state vector—to denote the levels of the cells,
where . We call the weight of the
cell-state vector. A cell-state vector is said to be
above another cell-state vector if for all
. When the cells change their states, they can only change to a

state vector above the current one.
A floating code has two functions: the interpretation function

, and the update
function

. The function maps each cell-state
vector to a variable vector, which is used to decode (interpret)
the stored data. The function shows how to rewrite: given the
current cell-state vector and the information on which of the
variables is to be updated to which new value, the function out-
puts the new cell-state vector. The new cell-state vector should
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be above the current cell-state vector and should correspond to
the new values of the variables.

A floating code supporting rewrites is a code that allows
the variables to be rewritten at least times in total, regardless
of what the sequence of rewrites are. In other words, we focus
on the worst-case performance of the codes in this paper. Given
the four parameters , , , , a floating code that maximizes the
value of is called optimal.

B. Optimal Floating Code for , and Arbitrary ,

We first present a floating code for and arbitrary ,
. In flash memories, to reduce interference between cells, it is

often desirable for cells to have similar levels [4]. The code here
achieves the minimum difference between cell levels among all
optimal codes, where the difference is at most two for multilevel
cells (where ). Three examples of the code are shown
in Fig. 1, corresponding to , 2, and 3, respectively. We
comment that , 2 are, in fact, degenerated cases; it is only
when or more that the code reveals the full structure of
its construction.

We define the cell-state vectors of the th generation to be
the cell-state vectors reachable after rewrites. In Fig. 1, all
the cell-state vectors in the same generation are placed at the
same horizontal level. For example, in Fig. 1(c), the cell-state
vectors in the second generation are (1,1,0),(1,0,1), and (0,1,1).
The codes in Fig. 1 are all for , and they all have periodic
patterns; specifically, every code is a repetition of the structure
shown in the dotted box labelled by “one period.” To see how,
notice that the first generation in the dotted box contains two
cell-state vectors corresponding to two different variable vec-
tors, and so is true for the generation of cell-state vectors directly
following the dotted box; what’s more, the latter two cell-state
vectors can be obtained from the former two cell state vectors
by raising every cell’s state by 2. (For example, in Fig. 1(b),
the former two cell-state vectors are (1,0) (0,1) and; when we
raise every cell’s level by 2, we get (3,2) and (2,3), the latter
two cell-state vectors.) The code is built for arbitrarily large in
the following way. A “period” in the code contains gen-
erations. The second period directly follows—and has the same
structure as—the first period, except that: (i) every cell’s state
is raised by 2; (ii) the pair of variable vectors (1,0) and (0,0)
are switched, and the pair of variable vectors (0,1) and (1,1) are
also switched. For , the th (respectively,

th) period has the same structure as the first (respec-
tively, second) period except that every cell’s level is raised by

.
If is finite, it is simple to get the corresponding code: just

truncate the above code to the maximum generation, subject to
the constraint that every cell’s level is at most .

We now present the formal construction of the floating
code. First, let’s define a few terms. A vector
is called an vector if or for

. An vector is
called monotonic if its entries monotonically decreases, that
is, for all . An
vector is called nearly monotonic if there

exists an integer such that ,
and the vector is

monotonic. For example, (1,1,0,1,0,0) is a nearly monotonic
vector. Given any vector , define

.
Construction 1 (Optimal Floating Code for and

Arbitrary , ): For , , let
denote the set of th generation cell-state vectors that represent
the variable vector (1,0) (if is odd) or (0,0) (if is even), and
let denote the set of th generation cell-state vectors that
represent the variable vector (0,1) (if is odd) or (1,1) (if is
even). The elements of and are defined as follows:

1) CASE ONE: .
In this case, A cell-state vector is in if is a
monotonic vector and

. The
cell-state vector is in if “monotonic” is replaced by
“nearly monotonic” in the above condition.

2) CASE TWO: .
In this case, A cell-state vector
is in if it satisfies two conditions: (1)

,

, and

; (2) if is the unique

integer such that , then the vector of length

is a monotonic
vector.
The cell-state vector is in if “monotonic” is replaced
by “nearly monotonic” in the second condition above.

3) CASE THREE: .
In this case, a cell-state vector is in if one of its entries
is and the other entries are .
The cell-state vector is in if two of its entries are

and the other entries are .

4) CASE FOUR: .
In this case, a cell-state vector is in if one of its entries
is and the other entries are . The
cell-state vector is in if all its entries are .

It is straightforward to verify the correctness (validity) of the
code in Construction 1. The key step is to verify that every th
generation cell-state vector has two th cell-state vector
above it that correspond to the two possible rewrite choices. For
simplicity, we skip the details. The construction shows that the
code has a periodic structure, with rewrites as a period.
To analyze its performance, we need to derive bounds for the
rewriting performance of floating codes. It will be shown that
the code in Construction 1 is strictly optimal.

C. Bounds

We show a general upper bound for , the number of rewrites
supported by floating codes, for arbitrary , , , and .
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Fig. 3. A family of floating codes with � � � �, � � � and � � ������. The numbers inside (respectively, beside) a node are the cell-state vector (respectively,
variable vector). The code has a cyclic property. It takes � rewrites for the cell-state vector to reach the “�th generation.” (a) � � � � �, � � �. (b) � � � � �,
� � �. (c) � � � � �, � � �.
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Theorem 2: For any floating code, if , then

if , then

Proof: First, consider the case where
. Let denote the cell-state vector. Let

, and let . Let’s call a rewrite
operation “adversarial” if it either increases by at least two
or increases by at least one. Since there are variables and
each variable has the alphabet size , a rewrite can change the
variable vector in different ways. However, since
is the summation of only cell levels, there are at
most ways in which a rewrite can increase by
one. So there must be an “adversarial” choice for every rewrite.

Consider a sequence of adversarial rewrites supported by
a generic floating code. Suppose that of those rewrites in-
crease by at least two, and of them increase by
at least one. Since the maximum cell level is , we get

and . So
the number of rewrites supported by a floating code is at most

. The

case where can be analyzed similarly.

Corollary 3: The floating code of Construction 1 supports

rewrites, which is optimal.
Proof: When , by Theorem 2 we get

for all floating codes. It matches the value
of in Construction 1.

The bound in Theorem 2 is suitable for small values of and
. (For example, it is tight when , .) When , are

large, the following bound can be better.

Theorem 4: Let be the smallest positive integer such that
. Then for floating codes, .

Let be the smallest positive integer such that .

Then for floating codes, when , .
Proof: First, consider the general case . Define

as
, and let be the

smallest integer such that . Define as

. By letting for
, we see that there is a one-to-one mapping

between and . So . An element
belongs to if and only if it is a solution to the following
problem: partition a path of vertices into either or

subpaths such that for , the th subpath

has vertices. Therefore, . So is also the
smallest positive integer such that .

consecutive rewrites can make the variables change to or
go through any of the possible values. If we see (for

) as the increase in —the state of the th cell—and
consider the way and are defined, we see that whatever the
current cell state vector is, there exist consecutive rewrites that
increase the weight of the cell-state vector by at least

. Now consider the first batch of such rewrites, the second
batch, and so on. Since the maximum weight of the cell state
vector is , we get .

For the slightly more restrictive case , we refine the
above proof a little. When , among the cell state vec-
tors that consecutive rewrites can make the cell state vector
change to or go through, there are at least two cell state vectors
(including the current cell state vector) that correspond to the
current variable vector. The rest of the proof is similar.

Theorem 5: There exist floating codes with
.

Proof: Assign cells to each variable, where the sum-
mation of cell levels modulo represents the variable.

Theorem 6: When , , are fixed and , there exist
floating codes where .

Proof: See the variables of alphabet size as one variable
of alphabet size , and use a WOM code for rewriting. A WOM
code can support rewrites when [25]. By using
the levels level by level (first use levels 0 and 1, then levels 1
and 2, and so on), rewrites are supported.

The above result shows floating codes can integrate the
rewriting capability for different variables well when is large.
The next upper bound refines Theorem 4, although it requires
an iterative algorithm to compute the bound.

Theorem 7: For , define as follows: (1) If
and is even, ; (2) if and

is odd, ; (3) if ,
. Also, define as the smallest positive integer such that

. Let be the integer
such that for ,.

For any floating code,

.
Proof: is the number of values that the variable vector

can possibly take after rewrites. (By symmetry, does not
depend on the initial value of the variable vector.) Consider
consecutive rewrites. They increase the weight of the cell-state
vector by at least . For any , the number of ways to raise
the states of cells such that the weight of the cell-state vector
increases by at least and at most is . The

consecutive rewrites can change the variable into possible
values, each of which corresponds to at least one way of raising
the cell states. So by the definition of , there is a sequence
of consecutive rewrites that increases the weight of the cell-
state vector by at least . Choose such sequences
of rewrites (one after another), and they make the weight of the
cell state vector be at least .
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After that, since the weight cannot exceed , there is a
sequence of rewrites that is not feasible due to the lack of
room for the weight increase. Also, each rewrite increases the
weight by at least one. So after the initial sequences of

rewrites (which consist of rewrites in total), at most

more rewrites are guaranteed

to be feasible. So

.

The above bound compares favorably with the upper bounds
in Theorems 2 and 4 when or is relatively large. For example,
when , , , , Theorem 7 gives , and
the bounds in Theorems 2 and 4 show .

IV. MORE FLOATING CODE CONSTRUCTIONS

In this section, we present several floating code constructions.
They range from specific parameters to general settings.

A. Floating Code for , and Arbitrary

We first present a floating code for , and
arbitrary . The code is strictly optimal when . To
illustrate its structure, we show some examples of the code.

Example 8 (Floating Code for , and
Arbitrary ): Three codes are shown in Fig. 3, which support

rewrites. The codes have a cyclic property: If the
cell-state vector represents
the variable vector , then the
cell-state vector
represents the variable vector

. For simplicity, for every set of cell-state vectors
that are cyclic shifts of each other, only one of them is shown in
Fig. 3 as their representative.

For instance, consider the code in Fig. 3(c) with ,
and . If the rewrites change the variables

as

, the cell-state vector can change as

.

We now present the general code construction. (Note
that the code has a cyclic property, as explained in Ex-
ample 8.) In the following, define and as the
minimum and the maximum cell level, respectively. That is,

and .
Construction 9 (Floating Code for , and

Arbitrary ): The cell-state vectors are mapped
to the variable vectors in the following way:

• TYPE I: If , then for .
• TYPE II: If , then for

.
• TYPE III: If

—that is, it starts with ,
and its next entries are all —then

for .
• TYPE IV: If

—that is, it starts with

, , and its next entries are all
—then and for , .

• CYCLIC PROPERTY: If we cyclically shift any cell-state
vector mentioned above by positions (here

), then the corresponding variable vector also cyclically
shifts by positions.

For notational convenience, if is a cell-state vector of type
I (respectively, II, III, or IV), then we say that a cyclic shift of
is of type I (respectively, II, III, or IV), too. Recall that it takes

rewrites for the cell-state vector to reach the th generation.
For the code of Construction 9, the generation that a cell-state
vector belongs to can be computed in the
following way:

• If is of type I, it is of the th generation.
• If is of type II, then let denote the number of cells of

level . is of the th generation.
• If is of type III, it is of the th generation.
• if is of type IV, it is of the th generation.
We briefly explain how the code is used for rewriting. For a

cell-state vector of the th generation, a rewrite always changes
it to the th generation. For example, if and
the current cell state vector is (0,2,1,1,1) (which is of type III,
fifth generation, representing ),
and we want to change the variable vector to (1,1,1,0,1), we can
change the cell-state vector to (2,2,2,1,2) (type II, sixth genera-
tion). It is simple to verify through case enumeration that for any
cell-state vector of generation , there are cell-state
vectors in the th generation above it that correspond to
the possible rewrite requests. So we get the following.

Theorem 10: The floating code in Construction 9 supports
rewrites.

Corollary 11: The floating code in Construction 9 is optimal
when .

Proof: By Theorem 2, when and ,
. That matches the performance of this code.

B. Floating Codes for , and Arbitrary ,

We now use the code of Construction 1 as a building block to
design floating codes for , and arbitrary , .
The new codes are asymptotically optimal in and . The idea
is to use composition of codes and a “level-by-level” approach.
Recall that Construction 1 is for two binary variables. When

, it is reduced to the following construction:
• If a cell-state vector is monotonic,

then it represents the variable vector (1,0) (if is
odd) or (0,0) (if is even). If a cell-state vector

is nearly monotonic, then it represents the
variable vector (0,1) (if is odd) or (1,1) (if
is even).

The above code supports rewrites, and each rewrite
changes one cell level from 0 to 1. Furthermore, it essentially
uses the cells from left to right: after rewrites, the cells of
level 1 must be among the first cells. This property shows
that we can use cells to encode binary variables this
way: “use the cells from left to right to encode two variables,
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and use the cells from right to left to encode the other two vari-
ables; stop rewriting when there are only three cells of level
0 left.” (Note that when there are three or more cells of level
0, we can differentiate the encoding on the two ends.) For ex-
ample, when , the cell-state vector (1,1,1,0,0,0,1,1,0) rep-
resents the variable vector (1,0,1,1), because in Construction
1, the cell-state vector represents variables (1,0)
and the cell-state vector represents the variables
(1,1). This approach can encode 4 binary variables and support

rewrites.
When , we can use a “level-by-level” approach: first

use level 0 and level 1 to encode variables, then use level 1 and
level 2, then level 2 and level Each rewrite raises only one
cell’s level except during the transition from levels and
to levels and .

Example 12: Let , , , . If
the variable vector changes as

, the cell states change as

Theorem 13: For the above floating code with and
, if is even, it supports rewrites;

if is odd, it supports rewrites.
Proof: Every rewrite raises one cell’s level by one, unless

the rewrite causes the transition from levels and to levels
and . During that transition, if is even (respectively,

odd), at most four (respectively, three) cells need to be set to
level . So the first pair of cell levels support rewrites
and every subsequent pair of cell levels support at least (if

is even) or (if is odd) rewrites.

When there are binary variables, the coding becomes
easier. That is because we can use a monotonic vector to encode
a single binary variable, and with every rewrite of the variable
we can increase one cell level by one. So we can partition the
three variables into two and one, and use the same composition
method in coding. When there are or 6 binary variables,
we can use the idea proposed by Fiat and Shamir in [7]: parti-
tion the cells into three parts—the two “ends” and the “middle
part”—and use each part to encode some data; when one “end”
nearly meets the “middle part”, allocate a new “middle part.”
Here, we can use each “end” to encode two binary variables, and
use the “middle part” to encode the remaining one or two binary
variables. For succinctness, we skip the detailed code construc-
tion. Readers can refer to [7] for the original idea (for WOM
codes) and [16] for the detailed floating-code construction and
analysis. The codes lead to the following theorem.

Theorem 14: When , and , if is even,
there is a floating code with ; if is
odd, there is a floating code with . When

, and , there is a floating code with
. When , and ,

there is a floating code with .
All the codes presented here support

rewrites. Since every rewrite raises cell levels (up to ), the

codes are all asymptotically optimal in , the number of cells,
and in , the number of cell levels.

C. Floating Codes for and General , ,

The codes shown so far are either for a small number of binary
variables (i.e., ) or for the special case . In this
subsection, we present a floating code for general values of .
The code is asymptotically optimal in and .

Construction 15 (Indexed Code: Floating Code for
and General , , ): Divide the variables into groups:

. For the cells, set aside a small number of
cells as index cells and divide the other cells into groups:

. Here and are chosen parameters, and .
For , the variables of are coded using a floating
code and are stored in . Afterwards, every time a cell group
can no longer support any more rewriting (say it stores ),
store in the next unused cell group. The index cells are used
to remember which cell group stores which variable group.

Theorem 16: When and , the
indexed code can support

rewrites, which is asymptotically optimal.
Proof: Let denote . In the indexed code con-

struction, let , , and set as the number
of index cells. Let each variable group have two binary vari-
ables, and let each cell group have cells.
Clearly, the number of index cells is sufficient, since every time a
new cell group is used, we can use index cells to show
which variable group it encodes. By Construction 1, every cell
group can support
rewrites. When the rewriting process ends, at most cell
groups will be underutilized. So the code can support at least

rewrites.

The above proof shows a simple way to use index cells to
record the mapping between cell groups and variable groups. In
practice, the code can be further refined using the fact that at
any moment, there are only partially used cell groups, so the
mapping is a permutation. For simplicity, we skip the details.
Interested readers can refer to the discussion in [15].

D. Constructions Based on Covering Codes for General ,
, ,

We have so far focused on floating codes for binary vari-
ables. In this subsection, we present a new method that con-
verts floating codes with large alphabets to floating codes with
small alphabets (including the binary alphabet) by using cov-
ering codes. The idea is to map a variable with a large alphabet to
a vector of a small alphabet such that when the variable changes
its value (i.e., is rewritten), only a few (preferably one) entries
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in the vector change their values. Based on this method, we
can obtain a series of bounds and code constructions for large
alphabets.

Construction 17 (Mapping Based on Linear Covering
Codes): Let be a variable of alphabet size . Choose an

linear covering code of alphabet size , which has
length and dimension . The requirement is .
The code has cosets of the codewords. Among them,
choose any cosets, and map them to the values of .

Example 18: Let be a variable that takes its value from an
alphabet of size : . Choose the simple (3,1)
repetition code. As a result, the mapping from to bit vectors
of length 3 is as follows:

To design a floating code for variables
of alphabet size 4, we first map them to binary vari-
ables , where each
binary vector represents . Then we
use a floating code for the binary variables. Every
rewrite for maps to exactly one rewrite
for . (For instance, if and
changes as , the
binary vector will corre-
spondingly change as

.) So if
the floating code supports rewrites for the binary variables, it
also supports rewrites for the 4-ary variables .

It is important for the selected covering code to have a small
covering radius, because when the large-alphabet variable
changes, the covering radius of the code equals the number of
entries in the small-alphabet vector that may change.

Let denote the covering radius of the covering
code in Construction 17. Let denote the greatest
number of rewrites that a floating code can guarantee to sup-
port, when -ary variables are stored in cells with states.
(Namely, is the optimal value of for floating codes
with parameters , , , .) The following theorem compares
the coding performance for different alphabets.

Theorem 19:
Proof: Map the variables of alphabet size

to variables of alphabet size with Construction 17. Build
an optimal floating code for the variables of alphabet size

, which guarantees rewrites.
For the covering code, every vector of length is

within Hamming distance from a codeword. So by the sym-
metry of linear codes, for every vector and each of the
cosets, there is a vector in the coset that is within Hamming dis-
tance from the former vector. So when we rewrite

, we are correspondingly rewriting at most -ary variables.
So supports rewrites for .
So .

Fig. 4. The relationship between floating codes with � � � and floating codes
with � � �. Here ���� �� �� �� denotes the optimal value of � (the number of
rewrites) for a floating code with the parameters �, �, �, �.

By using known results on covering codes [6], we can obtain
a number of bounds for floating codes with large alphabets in
terms of the performance of floating codes with binary alpha-
bets. We report some of the results in Fig. 4.

To show how to derive the results in Fig. 4, we first need to de-
fine a few terms. Let denote the smallest possible length
of a binary linear code with codimension (i.e., redundancy)
and covering radius . Let denote the minimum possible
covering radius of binary linear codes. (Note that some
of the letters here have different meanings from those used for
floating codes. We use these notations following the convention
of the study on covering codes [6].) A list of known results on
binary linear covering codes are shown in Fig. 5.

We show how to derive the inequalities in Fig. 4 by two ex-
amples. The first example is the third inequality in Fig. 4: For

and

By the third inequality in Fig. 5, when ,
. So if , we can map the variables of alphabet
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Fig. 5. Existing bounds for binary linear covering codes [6].

size to the cosets of a binary linear covering code, whose
covering radius is at most . By Theorem 19, we get the
third inequality of Fig. 4.

The second example is the 18th inequality in Fig. 4: For all
and

By the 18th inequality in Fig. 5, when ,
. So when and , we can

map variables of alphabet size to the cosets of a binary
linear covering code with covering radius 2, where

. By Theorem 19,
. Since ,

. So we get the 18th inequality of
Fig. 4.

The rest of the inequalities in Fig. 4 are derived similarly.
Since there have been a number of floating code constructions

for binary variables, floating codes with large alphabets can also
be built. The number of such results that can be obtained is large.
We show some example data of the obtainable floating codes in
Fig. 6.

V. BUFFER CODES

In this section, we define buffer code and present its construc-
tions. A buffer code is used for remembering the recent values
in a data stream.

A. Definition

We formally define the buffer code as follows. Let be a vari-
able with alphabet , whose value is changed by
rewrites as over time. Let be an in-
teger parameter. The buffer code uses -ary cells to remember

Fig. 6. Some example data on obtained floating codes. Here � is the number of
rewrites guaranteed by the obtained code, � is an upper bound for � (computed
using known results), and � � ��� .

the most recent values of . That is, for , when
the variable is rewritten as , the buffer code can recover the
vector . (By convention, we let
if .) With each rewrite, the cell levels can only increase, not
decrease. A buffer code that supports rewrites of the variable is
called a buffer code. Our objective is to maximize

given the parameters , , , .
Recording the last values of a sequence is useful in practice

for the implementation of certain data structures such as stacks.
Buffer codes can also be used to record logged data in file/data-
base systems, to checkpoint states, or to work as a buffer for data
streaming applications.

Some examples of buffer codes have been shown in Fig. 2,
where and . Those codes can also be described
by the state diagrams in Fig. 7. In the state diagrams, the

numbers inside a circle are the recent variable values
, and the number beside an edge

shows by how much the cell level needs to increase for the cor-
responding rewrite. We now present a generalized construction
for these codes.

B. A Single-Cell Construction

In this subsection, we present a buffer
code and show that it achieves

In other words, the code allows bits to be written
into a -ary cell. After every write, the last bits written can be
recovered.

The buffer code is defined by a surjec-
tive mapping, , from to . The mapping is defined
recursively

if
otherwise.

Here is the negation of . That is, if we change all
the bits in from 1 to 0 and from 0 to 1, we get . In
the code, for , we let the cell level represent
the variable values .
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Fig. 7. State diagrams for the buffer codes with � � �, � � �. The � numbers inside a circle are the � recorded bits. The number beside an edge shows by how
much the cell level needs to increase for the corresponding write. (a) � � �. (b) � � �. (c) � � �.

We have shown examples of the code in Figs. 2 and 7. We now
prove the performance of the code. Without loss of generality,
let us assume .

Theorem 20: The buffer code supports

rewrites.
Proof: We need to show that any binary sequence of

length at most will bring the value of the cell level to at most
. We first show that the worst case sequence, , is an al-

ternation of 1 s and 0 s, namely the sequence

of length . In the state diagram of Fig. 7(b), corresponds to
alternating states (0,1) and (1,0). Each state transition increases
the cell level by 2, which is the maximum increase for this state
diagram ( ). Similarly, in the state diagram, shown in
Fig. 7(c), corresponds to alternating states (0,1,0) and (1,0,1),
increasing the cell level by 4 for each bit written. In the general
case, for the two vectors and (or

and ), they are adjacent in the
state diagram. What is more, the transition between them makes
the cell level to increase by , which happens to be the largest
possible increment of the cell level for a write. Therefore, it is
not hard to verify that the sequence is the worst case sequence.
The initial writes increase the cell level respectively by

, after which the increment is . Each of the
increments is the maximum possible. Therefore

We now present an upper bound to for buffer codes with
and arbitrary , , .

Theorem 21: When , every buffer code has

Proof: Since writes can completely change the recent
variable values, there is always a sequence of writes that in-
creases the cell level by at least . We choose the first set
of writes, the second set of writes, , the th set of writes
such that every such set of writes increases the cell level by at
least . Let be as large as possible. After those writes,
select a set of writes after which no more write can be per-
formed. Let be as small as possible. Clearly, .

Since the maximum cell level is , . Note

that . If ,
then

. Now consider the case that .
In that case, the last writes increase the cell’s level by at most

. As or fewer writes lead the variable value
to possible values, with the same analysis as before, we get

. So
. So again,

. So the theorem holds.

C. Code Construction for and General , ,

We present a buffer code for and general , , with
. The code achieves .

We first define some terms that will be used in the rest of the
paper. For , we use to denote the th cell. We
use —called the cell-state vector—to denote the
states of the cells, where is the state of the
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th cell. We use —called the variable vector—to
denote the most recent values of , with being the most
recent value and being the oldest among the most recent
values. That is, when the value is written, ,

, , and . We define the cell-state vectors
of the th generation to be the set of cell-state
vectors reachable after exactly rewrites since the beginning.

We first present the buffer code construction for the special
case . We will then naturally extend the code construction
for arbitrary . The code is defined as follows.

• Mapping cell-state vectors to variable vectors: By valid
cell-state vector, we mean a cell state vector that can be
reached by some rewrite operations. Every valid cell-state
vector of this code satisfies the following
property: For , for any cell-state vector
of the th generation, there are exactly cells in the state 1
and cells in the state 0; what’s more, all those cells
in the state 1 belong to the set (namely,
the first cells).
Clearly, a valid cell state vector is in the

th generation.
A valid cell state vector in the th gener-
ation is mapped to the variable vector as
follows: For , .

• Writing: The code enables rewrites. Let’s say that the
current cell state vector is
and it is in the th generation. Say that
the next rewrite is to change the variable’s value to . (By
default, only the rewrites that change the variable vector
are considered. It means that if the current variable vector
is or , then cannot be 0 or 1,
respectively.) Then, if , find an integer such
that , and change —the state of the th cell—to
be 1; if , then change from 0 to 1.

The following is an example of the code.

Example 22: Let , , , and .
If the rewrites change the variable vector as

, then the cell-state vector changes
as

. We can see that given a cell-state
vector, recovering the variable vector is very simple: just read
the th, th, , th entries in the cell state
vector, where is the number of 1’s in the vector.

We now extend the above code from to by
using the “level by level” approach: first use levels 0 and 1, then
levels 1 and 2, , and finally levels and to encode
the data. Note that when the levels 0, 1 are used, the code can
support rewrites. Then for , when we
transit from levels , to levels , , we may need to set
as many as cell levels to for the first rewrite; so the levels
, can support rewrites.

Theorem 23: The buffer code presented above is valid, and it
supports rewrites.

Proof: First, assume . To prove the code is valid,
we use induction to prove the following assertion: “For

, the th rewrite leads the cells to a valid cell state
vector that correctly corresponds to the new variable vector.”
Consider the case . The first rewrite has only one possi-
bility: to change the variable to 1. By the code construction, the
cell state becomes as follows: , and

for all . That cell state is valid and corre-
sponds to the variable vector . So the assertion
holds when . That serves as the base case.

Assume that the assertion holds for all , where
. Now consider the case . Say that the th rewrite

changes the variable to , where or 1. By the induction
assumption, after the th rewrite, cells are in the
state 1, and they all belong to the first cells (namely,
cells ); therefore, among the first cells, at
least one of them is in state 0. If , the th rewrite changes
such a cell in state 0 to state 1, so the number of cells in state
1 becomes ; if , the th cell is changed from 0
to 1, so the number of cells in state 1 also becomes . Clearly,
after the th rewrite, all those cells in state 1 are among the
first cells. Therefore, the cell state vector after the th
rewrite is valid. Say that after the th rewrite, the cell state
vector is . Its corresponding variable vector is
simply . After the th
rewrite, the state of the th cell becomes , so the corre-
sponding variable vector is

, which is the correct variable vector. So the
assertion holds when . This completes the induction for

. When , the code uses the “level by level” ap-
proach, and it is simple to see that the conclusion holds.

D. Enhanced Buffer Code for , and General ,

The code presented in the previous subsection has a that is
asymptotically optimal in , (for ). When , it
gives . In this section, we present a better
code with . In particular, when , this
code is strictly optimal.

We first present the new code construction for the case ,
and analyze its properties. The construction is then extended for
general using the “level by level” approach.

The new buffer code enhances the code construction of the
previous subsection. When , it has . The new
code uses the same method as the previous code to map cell-state
vectors of the 1st, 2nd, , th generations to variable
vectors. It adds the following specification to the previous code
construction to handle the first rewrites:

• Writing: Let’s say that the current cell-state vector
is and it is in the th

generation, where . (The corresponding
variable vector is .) Say that the
next rewrite is to change the variable’s value to . The
rewrite is performed as follows:
1) If and , then change

—the state of the th cell—to 1.
2) If and , then find the

integer such that , and change to 1.
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3) If and , then find the
integer such that “ and is
an even integer”, and change to 1.

4) If , change from 0 to 1.
The mapping from the cell-state vectors in the th gen-

eration to the variable vectors is as follows:
• Mapping from cell-state vectors to variable vectors: Every

valid cell-state vector in the th generation satisfies
this property: Among the cells, of them are in state
1 and one of them is in state 0.
Given a valid cell state vector in the th generation,
let’s say that —the th cell—is the unique cell in state
0. The cell state vector is mapped to the variable vector

in the following way:
1) If and is even, then .
2) If and is odd, then .
3) If , then .
4) If , then .

The th rewrite is performed in the following way:
• The th rewrite: Let’s say that after the

th rewrite, the cell-state vector is
. (The corresponding variable vector is

.) Say that the th rewrite
is to change the variable’s value to . It is performed as
follows:
1) If “ and ” or “ and

,” then change from 0 to 1.
2) If and , then change from

0 to 1.
3) If and , then let

be the integer such that “ and is odd”, and
change from 0 to 1.

4) If and or (1,0), then let
be the integer such that , and change

from 0 to 1.

Example 24: Let , , , . If
the rewrites change the variable vector as

,
then the cell-state vector changes as

.
The next lemma shows a special property of the new code.

Lemma 25: For the new code constructed in this subsection,
for , let be a valid cell-state
vector in the th generation. By the code construction, among
the first cells— —exactly two of them are
in the state 0. Let and be those two cells. Then, between

and , one is odd and the other is even.
Proof: The proof is by induction on . When ,

, so p=1 and . So the lemma holds when .
This serves as the base case.

Assume that when , the lemma holds. Now
consider the case . The proof for this induction step is
a straightforward check using the rule on writing in the code
construction. For example, consider the following case: after

writes, the states of and are 0 and 1, respectively,
and the th write changes the variable to 0. In this case, the

code construction changes the state of to 1. By the induction
assumption, after writes, there is a cell
whose state is 0 such that between and , one is odd and one
is even. After the th write, both and are in the state
0, so we can let and ; then between and ,
one is odd and the other is even; so the lemma holds. All the
other cases can be checked similarly; for simplicity, we skip the
details. That completes the induction. So the lemma holds for
all .

Theorem 26: The new buffer code constructed in this sub-
section is valid. And it supports rewrites, which is
optimal.

Proof: It is easy to verify that the new code deals with the
first writes and the 0th, 1st, th generations
of cell state vectors in the same way as the code construction
in the previous subsection does, except that the writes are
performed in a more specific way. For succinctness, we omit the
details of this simple verification. Now consider the th
write. Based on Lemma 25, any cell state vector in the

th generation has exactly two cells , whose states are
0, while between and one is odd and the other is even. By
using this observation, and by the way the code construction
performs the th write and maps the th generation of
cell-state vectors to variable vectors, we can easily use a case by
case verification to see that the th write always leads the
cells to a valid cell-state vector that corresponds to the correct
variable vector. So the code is correct. It directly follows from
the code construction that .

The above code construction and analysis are for .
When , we can use the cells “level by level” in the same
way as before. For such a code, becomes .

VI. CONCLUSION

With the wide application of flash memories, it has become
important to design appropriate coding schemes for them. For
flash memories, due to the high cost of block erasures, it is a
critical requirement to rewrite data efficiently. Different from
the current techniques used in flash memories, such as wear lev-
eling for balancing erasures, rewriting codes can minimize the
total number of erasures. In this paper, we focus on the joint
storage of data, with the objective of maximizing the number
of times the data can be rewritten. We define floating codes and
buffer codes, two rewriting codes designed for different applica-
tions. We explore the information theoretic bounds for the two
codes, and present a set of code constructions. The results show
that the rewriting capabilities of different data variables can be
integrated to a high degree.
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