CPSC 313: Intro to Computer Systems POSIX Threads

POSIX Threads

¢ Why Threads?
- Latency Hiding / Multiprogramming (covered earlier)
- Ease of Programming (covered now)
e POSIX Threads (R&R, Chapter 12)
- Thread Management
- Thread Safety

- Thread Attributes

POSIX Threads

¢ Why Threads?

- Ease of Programming (covered now)

CPSC 313: Intro to Computer Systems POSIX Threads

Why Threads?

Many interactive applications run while (1) {

in loops. /* Read Keyboard */

/* Recompute Player Position */
/* Update Display */

For example, an interactive game.

e Reference [B.O. Gallmeister,
“POSIX.4, Programming for the
Real World,” O'Reilly&Assoc.,

Inc.]
Why Threads?
® Many interactive applications run while (1) {
in loops. /* Synchronize to Highest

Frequency */
/* Read Keyboard */
/* AND Read Mouse */
/* Recompute Player Position */
/* Update Display */
/* AND emit sounds */

e For example, an interactive game.

e Reference [B.O. Gallmeister,
“POSIX.4, Programming for the
Real World,” O'Reilly&Assoc.,
Inc.]

CPSC 313: Intro to Computer Systems POSIX Threads

Why Threads?

® Many interactive applications run while (1) {
in loops. /* Synchronize to Highest
Frequency */

/* Read Keyboard */

/* AND Read Mouse */

/* Recompute Player Position */
/* Update Display */

e For example, an interactive game.

e It ain't over yet!
e What about compute-intensive

. . R /* AND all other lights */
operations, like AI, video S AND emit R */g
compression? emit sounds

/* AND more sounds */
/* AND move game physically */

e How about Signal Handlers? }

Suddenly, application is getting complex!

e Reference [B.O. Gallmeister,
“POSIX.4, Programming for the
Real World,” O'Reilly&Assoc.,

Inc.]
Reading the Mouse
while (1) {
/* Synchronize to Highest read mouse () {
Frequency */ / -
/* Read Keyboard */
/* AND Read Mouse */

/* Recompute Player Position */
/* Update Display */

/* AND all other lights */
/* AND emit sounds */
/* AND more sounds */

/* AND move game physically */ }

CPSC 313: Intro to Computer Systems

POSIX Threads

Reading the Mouse (II)

while (1) {
/* Synchronize to Highest
Frequency */
/* Read Keyboard */
/* AND Read Mouse */
/* Recompute Player Position */
/* Update Display */

/* AND all other lights */

/* AND emit sounds */

/* AND more sounds */

/* AND move game physically */

Separate Process

int main() |
read mouse ()

{

Reading the Mouse (III)

while (1) {
/* Synchronize to Highest
Frequency */
/* Read Keyboard */

/* AND Read Mouse */ ”

/* Recompute Player Position */
/* Update Display */

/* AND all other lights */

/* AND emit sounds */

/* AND more sounds */

/* AND move game physically */

Separate Thread

read mouse () |

CPSC 313: Intro to Computer Systems

POSIX Threads

The Thread and its Creation

/* The Mouse Input Function */

void * read mouse() {
char buf[BUFSIZE]; ssize_ t nbytes;
for (;;) |

break;
dosomething with (buf, nbytes);
}
return NULL;
}

if ((nbytes = read from mouse (buf,BUFSIZE))

<=

0)

The Thread and its Creation

/x

/*
/*
/*
/*
/*
/*
/*
/*

#include <pthread.h>

int error;
pthread t tid;

if (error = pthread create(&tid, NULL, read mouse, NULL)
perror (“Failed to create read mouse thread”);

while (1) {

Synchronize to Highest
Frequency */

Read Keyboard */
AND Read Mouse */ <- Handled by separate thread!
Recompute Player Position */
Update Display */
AND all other lights */
AND emit sounds */
AND more sounds */
AND move game physically */

CPSC 313: Intro to Computer Systems POSIX Threads

Thread Management

+ pthread_cancel (terminate another thread)
+ pthread_create (create a thread)

+ pthread detach (have thread release res’s)
+ pthread equal (two thread id's equal?)

+ pthread_exit (exit a thread)

+ pthread_kill (send a signal to a thread)

+ pthread_join (wait for a thread)

+ pthread_self (what is my id?)

Thread Management

+ pthread_cancel (terminate another thread)
+ pthread_create (create a thread)
+ pthread detach (have thread release res’s)

+ pthread equal (two thread id's equal?)

* pthread
. h ;
pthread | int pthread create(pthread t *restrict thread,
. h - . ;
pthread_ const pthread attr t * restrict attr,
* pthread .

void *(*start routine) (void *),

void *restrict arg)

CPSC 313: Intro to Computer Systems

POSIX Threads

Thread Attributes

atribute objects

pthread_attr_destroy
pthread_attr_init

state

pthread_attr_getdetachstate
pthread_attr_setdetachstate

stack

pthread_attr_getguardsize
pthread_attr_setguardsize
pthread_attr_getstack
pthread_attr_setstack

scheduling

pthread_attr_ getinheritedsched
pthread_attr_setinheritedsched

pthread_attr getschedparam
pthread_attr_ setschedparam
pthread_attr_getschedpolicy
pthread_attr_setschedpolicy
pthread_attr_getscope
pthread_attr_setscope

Thread Attributes: State

atribute objects

pthread_attr_destroy
pthread_attr_init

state

pthread_attr_getdetachstate
pthread_attr_setdetachstate

stack

pthread_attr_getguardsize

pthread_attr_setgq;
pthread_attr gets
pthread_attr_sets

scheduling

pthread_attr geti
pthread_attr_seti
pthread_attr gets

Detached threads release
resources when terminate.
Attached states hold on to
resources until parent thread
calls pthread join.

pthread_attr_ setschedparam
pthread_attr_getschedpolicy
pthread_attr_setschedpolicy
pthread_attr_getscope
pthread_attr_setscope

CPSC 313: Intro to Computer Systems

POSIX Threads

Thread Attributes: Stack

atribute objects

pthread_attr_destroy
pthread_attr_init

state

pthread_attr_getdetachstate
pthread_attr_setdetachstate

stack

pthread_attr_getguardsize
pthread_attr_setguardsize
pthread_attr_getstack
pthread_attr_setstack

scheduling

pthread_attr getinheritedsched

pthread al of stack.

pthread al is generated.

pthread al ¢ setstack defines location and size

pthread a e setquardsize allocates additional
pthread al memory. If the thread overflows
pthread a| into this extra memory, an error

pthread_attr_setscope

Thread Attributes: Scheduling

atribute objects

state

stack

PTHREAD_INHERIT_SCHED defines that scheduling
parameters are inherited from parent thread. (as opposed to

PTHREAD_EXPLICIT_SCHED).

Scheduling policies: SCHED_FIFO, SCHED_RR,

SCHED_SPORADIC, SCHED_OTHER, ...

contention scope defines whether process competes at
process level or at system level for resources.

pthread_attr_setstack

scheduling

pthread_attr_getinheritedsched
pthread_attr_setinheritedsched
pthread_attr_ getschedparam
pthread_attr_ setschedparam
pthread_attr_getschedpolicy
pthread_attr_setschedpolicy
pthread_attr_getscope

pthread_attr_setscope

