
1

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Programs, Processes, and Threads

• Programs, Processes, and Threads (Chapter 2)

• Processes in UNIX (Chapter 3)

Programs, Processes, and Threads

• Programs, Processes, and Threads (Chapter 2)

• Processes in UNIX (Chapter 3)

2

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Processes Management

• What is a process?

• How to control processes.

• How to allocate the available resources to the
execution of the processes (scheduling)

• How to coordinate processes among themselves
(synchronization)

Processes and Process Control

• Q: What is a process?

• Process as execution of a Program

• We can trace the execution of a process

• Process as minimal entity for resource allocation
(for example memory).

3

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Simple Memory Layout of a Running Program

command-line arguments
 and environment variables

stack

program text

initialized static data

uninitialized static data

heap

high address

low address

The Execution Trace of Processes

• Two processes and a
dispatcher

dispatcher

program A

!

"

#

program B

!
!+1
!+2
!+3
!+4
!+5
!+6
!+7
!+8
!+9
!+10
!+11

"
"+1
"+2
"+3
"+4
"+5
"+6
"+7
"+8
"+9
"+10
"+11

#
#+1
#+2
#+3
#+4

Trace of dispatcher

Traces of processes A and B

"
"+1
"+2
"+3
"+4
#
#+1
#+2
#+3
#+4
!
!+1
!+2
!+3
!+4
#
#+1
#+2
#+3
#+4
"+5
"+6
"+7
...

4

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

States of a Process

• User view: A process is executing continuously
• In reality: Several processes compete for the CPU and other

resources
• A process may be

– running: it holds the CPU and is executing instructions
– blocked: it is waiting for some I/O event to occur
– ready: it is waiting to get back on the CPU

ready running

blocked

terminatecreate

preempt

dispatch

I/O requestI/O complete

Process Creation

• Submission of a batch job
• User logs on
• Create process to provide service such as printing
• Spawned by existing processes

• In UNIX:
all processes created by fork() system call

5

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Example: Vanilla Command Interpreter

char command[MAX_COMMAND_LENGTH];

do {

 command = read_command(stdin);

 if (fork() != 0) {

 /* parent */

 if (last_char(command) != ‘&’) {

 /* run in foreground, i.e. wait */

 waitpid(-1, &status, ...);

 }

 }

 else {

 /* child */

 execve(command, ...);

 }

} while (strcmp(command, “exit”) != 0); /* ?!? */

Suspended Processes

start

suspended
ready

suspended
blocked

blocked

ready running

6

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

The Process Control Block (PCB)

• Mechanism of a process switch:

• The PCB contains all information specific to a process.

Preempt Process A and store
all relevant information.

Load information about
Process B and continue execution

Preempt Process B and store
all relevant information.

Load information about
Process A and continue execution

(id
le

)
(id

le
)

(id
le

)

Process A Process B

process identification

processor state
information

process control
information

Process Control Block

Example for the Use of PCBs: Process Queues

ready running

waiting
ready queue

I/O device queues

executing process

disk 1

disk 2

serial I/O

7

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Elements of a PCB

process state
scheduling information
event (wait-for)
memory-mgmt information
owned resources

process control information

register set
condition codes
processor status

processor state information

process id
parent process id
user id
etc…

process identification

Processes in UNIX

created

ready
swapped

sleep
swapped

sleep in
memory

ready kernel
running

fork()

user
running

preempted

zombie

enough
memory

not
enough
memory

swap in

swap out

wakeup

swap out

wakeup

reschedule
process

sleep exit

interrupt

system call

return

return to
user

preempt

8

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Programs, Processes, and Threads

• Programs, Processes, and Threads (Chapter 2)

• Processes in UNIX (Chapter 3)

Threads

• Traditionally, processes interact very little:

• This is not true in modern systems: Some applications
may want to have multiple, tightly-coupled processes.

kernel

processes as jobs
in batch queue

user processes

9

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Problems with traditional (heavy-weight) processes

• Heavy-weight processes have separate
address spaces:

– Process creation is expensive
– Process switch is expensive
– Sharing memory areas among

processes non-trivial

user
stack

data segment

kernel
stack

PCB

Process

• Threads share address space:
– Thread creation much simpler than

process creation (no need to create
and initialize address space, etc.)

– Thread switch simple
– Threads fully share the address space

• Convenience
– communication between threads

• Efficiency

– multiprogramming within a process
(Netscape vs. Mosaic)

– multiprocessors

data segmentPCB

user
stack

kernel
stack

TCB

user
stack

kernel
stack

TCB

...

Threads

thread thread

10

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

User-Level vs. Kernel-Level Threads

• User-level: kernel not aware of threads
• Kernel-level: all thread-management done in kernel

P

threads
library

P

Potential Problems with Threads

• General: Several threads run in the same address space:
– Protection must be explicitly programmed (by appropriate thread

synchronization)
– Effects of misbehaving threads limited to task

• User-level threads: Some problems at the interface to the kernel:
With a single-threaded kernel, as system call blocks the entire task.

task kernel

system call

thread is blocked in kernel
(e.g. waiting for I/O)

11

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Singlethreaded vs. Multithreaded Kernel

• Protection of kernel data
structures is trivial, since only
one process is allowed to be in
the kernel at any time.

• Special protection mechanism is
needed for shared data
structures in kernel.

Threads in Solaris 2.x

CPUs

kernel

processes

user-level threads

light-weight
processes

kernel threads

