
CSCE Intro to Computer Systems Security

1

Security
•  Overview

–  Security Goals
–  The Attack Space

•  Security Mechanisms
–  Introduction to Cryptography
–  Authentication
–  Authorization
–  Confidentiality

•  Case Studies

Security Today…

CSCE Intro to Computer Systems Security

2

Typical Attacks: Penetration Attempts
•  Two basic forms:

–  completely bypass authentication mechanism
–  obtain information or alter the system so as to enter system

as authorized user
•  Attempts:

–  Wire tapping (active vs. passive)
–  Trial and error
–  Browsing

•  Search storage (in particular previously allocated, but now
available) for unauthorized information.

–  Trap doors
•  Unspecified and undocumented features of the system

that may be exploited to perform unauthorized actions.
–  Trojan horse
–  Searching of waste

Typical Attacks: Man-In-The-Middle

CSCE Intro to Computer Systems Security

3

Typical Attacks: Masquerading

Man-In-The-Middle: Example
•  Passive tapping

–  Listen to communication without altering contents.
•  Active wire tapping

–  Modify data being transmitted
–  Example:

user! intruder! server!

fine! !

X logoff! ! Intruder!
takes over !
identity of user!
(masquerading)!

CSCE Intro to Computer Systems Security

4

Security Threats
•  Information Disclosure:

–  unauthorized dissemination of information
–  result of theft or illegal action of who has access to

information
•  Information Destruction:

–  loss of internal data structures
–  loss of stored information
–  information may be destroyed without being disclosed

•  Unauthorized Use of Service:
–  bypass system accounting policies
–  unauthorized use of some proprietary services

•  Denial of Service:
–  prevent an authorized user from utilizing the system’s

services in a timely manner

Security Goals

•  Authentication of Alice (the client)
•  Authorization of request from Alice
•  Confidentiality (e.g. protect the content of request)
•  Accountability (non-repudiation)
•  Availability

“Alice”

“Bob”

“Eve” “Lucifer”

CSCE Intro to Computer Systems Security

5

Security: Systems Overview

Functionality Authentication Authorization Confidentiality

Primitives
sign()

verify()

Access control
lists

Capabilities
“magic cookies”

encrypt()
decrypt()

Cryptography cyphers and hashes

Cryptography

Functionality Authentication Authorization Confidentiality

Primitives
sign()

verify()

Access control
lists

Capabilities
“magic cookies”

encrypt()
decrypt()

Cryptography cyphers and hashes

Cryptography:
•  Closed-Design vs. Open-Design Cryptography
•  Symmetric Encryption
•  Asymmetric (“Public-Key”) Encryption

CSCE Intro to Computer Systems Security

6

Closed-Design Cryptography

“Alice” “Bob” “crypto box”
(closed)

“de-crypto box”
(closed)

Open-Design Cryptography

CSCE Intro to Computer Systems Security

7

Encryption

•  Encryption algorithm consists of
–  Set of K keys
–  Set of M Messages
–  Set of C ciphertexts (encrypted messages)
–  A function E : K → (M→C). That is, for each k ! K, E(k) is a function for

generating ciphertexts from messages.
•  Both E and E(k) for any k should be efficiently computable functions.

–  A function D : K → (C → M). That is, for each k ! K, D(k) is a function for
generating messages from ciphertexts.
•  Both D and D(k) for any k should be efficiently computable functions.

•  An encryption algorithm must provide this essential property:
Given a ciphertext c ! C, a computer can compute m

such that E(k)(m) = c
only if it possesses D(k).

–  Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts
used to produce them, but a computer not holding D(k) cannot decrypt
ciphertexts.

–  Since ciphertexts are generally exposed (for example, sent on the network),
it is important that it be infeasible to derive D(k) from the ciphertexts

Symmetric Encryption

•  Same key used to encrypt and decrypt
–  E(k) can be derived from D(k), and vice versa

•  Examples:
–  Data Encryption Standard (DES)
–  Triple-DES
–  Advanced Encryption Standard (AES)
–  Twofish

CSCE Intro to Computer Systems Security

8

Symmetric Encryption: Caesar Cipher

MERRY CHRISTMAS

PHUUB FKULVWPDV

Symmetric Encryption: Jefferson’s Wheel Cipher

•  Sender:
–  assemble wheels in

some (secret) order.
–  Align message on one

line.
–  Choose any of the

other lines as
ciphertext.

•  Receive:
–  Assemble wheels in

same secret order.
–  Align cipertext on one

line.
–  Look for meaningful

message on other
lines.

Monticello Web Site: www.monticello.org/reports/interests/wheel_cipher.html!

CSCE Intro to Computer Systems Security

9

Symmetric Encryption: XOR

“Alice” “Bob”

"

k

m m " k m " k

"

k

m " k " k

" 0 1
0 0 1
1 1 0

Symmetric Encryption: DES (Data Encryption Standard)

Permutation

Permutation

Substitution

Permutation

CSCE Intro to Computer Systems Security

10

Asymmetric Encryption

Asymmetric Encryption (cont.)

•  Public-key encryption based on each user having two
keys:
–  public key – published key used to encrypt data
–  private key – key known only to individual user used

to decrypt data
•  Must be an encryption scheme that can be made public

without leaking the decryption scheme
–  Most common is RSA block cipher
–  Efficient algorithms exist for testing whether or

not a number is prime
–  No efficient algorithm is known for finding the

prime factors of a number

CSCE Intro to Computer Systems Security

11

RSA (cont)

•  If it is computationally infeasible to derive D(kd , N)
from E(ke , N), E(ke , N) need not be kept secret and
can be widely disseminated
–  E(ke , N) is the public key
–  D(kd , N) is the private key
–  N is the product of two large, randomly chosen prime

numbers p and q (for example, p and q are 512 bits
each)

–  Encryption algorithm is E(ke , N)(m) = mke mod N,
where ke satisfies kekd mod (p!1)(q !1) = 1

–  The decryption algorithm is then D(kd , N)(c) = ckd
mod N

RSA: Example
•  Make p = 7 and q = 13
•  We then calculate

 N = 7 13 = 91 and (p!1)(q!1) = 72
•  We next select ke relatively prime to 72 and< 72,

yielding 5
•  Finally, we calculate kd such that kekd mod 72 = 1,

yielding 29
•  We how have our keys

–  Public key, (ke, N) = (5, 91)
–  Private key, (kd, N) = (29, 91)

•  Encrypting the message 69 with the public key
results in the ciphertext 62

–  695 mod 91 = 62
•  Ciphertext can be decoded with the private key

–  6229 mod 91 = 69
•  Public key can be distributed in clear text to

anyone who wants to communicate with holder of
public key

CSCE Intro to Computer Systems Security

12

RSA in Practice…

“Alice” “Bob”

{m}kApriv : A signs a message with A’s private key.

{m}kBpub : A encrypts message with B’s public key.

Symmetric vs. Asymmetric Encryption

•  Symmetric cryptography based on simple
transformations

•  Asymmetric based on time consuming
mathematical functions
–  Asymmetric much more compute intensive
–  Typically not used for bulk data encryption
–  Used, instead, for short plaintexts, for

example symmetric keys.

CSCE Intro to Computer Systems Security

13

Key Exchange: Diffie Hellman
Step 1 Alice and Bob agree on a large prime m and “primitive

root” g mod m.
Note: m and g need not be secret.

Step 2 Alice and Bob privately pick random integer x and y,
respectively.

Step 3 Alice and Bob exchange X = gx mod m and Y = gy mod
m, respectively.

Step 4 Alice and Bob privately compute k = Yx mod m and
k’ = Xy mod m, respectively.

k = k’ mod m, since
k’ = Xy = (gx)y = gxy = (gy)x = Yx= k mod m

Scheme can be broken if Eve succeeds to solve the equation
gx = X mod m

for x, the “discrete logarithm base g of X modulo m”.

Authentication

Functionality Authentication Authorization Confidentiality

Primitives
sign()

verify()

Access control
lists

Capabilities
“magic cookies”

encrypt()
decrypt()

Cryptography cyphers and hashes

CSCE Intro to Computer Systems Security

14

Authentication

1.  Authentication
2.  Message Integrity
3.  Accountability / Non-Repudiation

“Alice” “Bob”

1. Who is making the request?

2. Is the received message
the same as the sent message?

3. How do I build an audit trail?

•  modify
•  (replay)
•  reorder
•  append

Message Integrity

•  Message Integrity can be guaranteed through
Error-Detection Code. (e.g. cryptographic hash)

Message Integrity # Authenticity # Confidentiality

“Alice”

“Bob”
“Lucifer”

“Transfer $100 from
 account X to account Y”

CSCE Intro to Computer Systems Security

15

Authentication: Model

•  Symmetric Encryption (k1 = k2):
–  A(m) is “message authenticator”

•  Asymmetric Encryption (k1 != k2):
–  A(m) is “signature”
–  Example: A(m) = {Hash(m)}kApriv

–  Cryptographically secure hash:
•  Prob(Hash(m) = Hash(m’)) is very low (“low collision prob.”)
•  SHA1, SHA256, etc.

“Alice” “Bob”

Sign

k1

m
Verify

k2

m

YES/NO

A(m)

m

Authentication: Sign() and Verify()
•  Algorithm components

–  A set K of keys
–  A set M of messages
–  A set A of authenticators
–  A function S : K → (M→ A)

•  That is, for each k ! K, S(k) is a function for generating
authenticators from messages

•  Both S and S(k) for any k should be efficiently
computable functions

–  A function V : K → (M × A→ {true, false}). That is, for
each k ! K, V(k) is a function for verifying authenticators on
messages
•  Both S and V(k) for any k should be efficiently computable

functions

CSCE Intro to Computer Systems Security

16

RSA in Practice…

“Alice” “Bob”

{m}kApriv: A signs a message with A’s private key.

{m}kBpub: A encrypts message with B’s public key.

{{m}kApriv}kApub: B verifies a message with A’s public key.

{{m}kBpub}kBpriv: B decrypts message with B’s private key.

kApub, kApriv kBpub, kBpriv

Authentication (Cont.)

•  For a message m, a computer can generate an
authenticator a ! A such that V(k)(m, a) = true only if
it possesses S(k).

•  Thus, computer holding S(k) can generate
authenticators on messages so that any other
computer possessing V(k) can verify them

•  Computer not holding S(k) cannot generate
authenticators on messages that can be verified using
V(k).

•  Since authenticators are generally exposed (for
example, they are sent on the network with the
messages themselves), it must not be feasible to
derive S(k) from the authenticators.

CSCE Intro to Computer Systems Security

17

Key Distribution Problem

•  Q: How does Bob learn Alice’s key?
–  Q.1: Alice’s public key?
–  Q.2: Alice’s shared key?

“Alice” “Bob”

“Alice’s public key is X”

“Alice’s public key is X”

Key Distribution: Certificates

“Alice” “Bob”
1. {m, Sign(m, kApriv)}

VeriSign
Comodo
GoDaddy
Others

2007 Market Share (source: Secure Space) “Charles”

Certificate Authority

2. {Alice?!!}

3. {m=“kApub=X”,
 Sign(m, kCpriv)}

CSCE Intro to Computer Systems Security

18

Establishing a Secure Channel
1.  Authenticate user using public key encryption.
2.  Use shared-key encryption for communication.

Q: How to Exchange Shared Key?

“Alice” “Bob”

“Charles”

1. {A,B}

3. {A, kApub, TS}kCpriv (certificate)
 {{kAB, TS}kApriv}kBpub (proposed key)

2. {A, kApub, TS}kCpriv
 {B, kBpub, TS}kCpriv
 (certificates)

Denning-Sacco Protocol (1982)

4. {data, TS}kAB

A Closer Look … [Abadi 1994]

“Alice” “Bob”

“Charles”

1. {A,B}

3. {A, kApub, TS}kCpriv (certificate)
 {{kAB, TS}kApriv}kBpub (proposed key)

2. {A, kApub, TS}kCpriv
 {B, kBpub, TS}kCpriv
 (certificates)

Assume B has
C’s certificate:
{C, kCpub, TS}kCpriv

4. {A, kApub, TS}kCpriv (certificate)
 {{kAB, TS}kApriv}kCpub (proposed key)

5. {data}kAB

Problem:
Message 3 does not specify who it is intended to.
This opens door for impersonation attacks.

CSCE Intro to Computer Systems Security

19

SSL

•  Applications: HTTP, IMAP, FTP, etc…

•  Client and server negotiate symmetric key that they
will use for the length of the data session.

•  Two phases in SSL:
–  Phase 1: Connection Establishment
–  Phase 2: Data Transfer

SSL: Connection Establishment
•  Step 1: Client sends request to server, containing

–  SSL version; connection preferences; nonce (i.e. some random
number)

•  Step 2: Server chooses among preferences, and sends reply, containing
–  Chosen preferences; nonce; public-key certificate
–  Public-key certificate is a public key that has been digitally signed by

a trusted authority.
•  Step 3: Client can use certification authority’s public key to check

authenticity of server’s public key.
•  Step 4: Server can request public key of client and verify it similarly

(optional)
•  Step 5: Client chooses random number (premaster secret), encrypts it

with server’s public key, and sends it to server.
•  Step 6: Both parties compute session key (used during data transfer)

based on premaster secret and the two nonces.
–  Note: At no point is the session key transferred between client and

server.

CSCE Intro to Computer Systems Security

20

SSL: Data Transfer

•  Messages are fragmented into 16kB portions.
•  Each portion is optionally compressed.
•  A Message Authentication Code (MAC) is appended

–  MAC is a hash derived from plaintext, two nonces,
and pre-master secret

•  Plaintext and MAC are encrypted using the symmetric
key constructed during connection establishment.

