CSCE Intro to Computer Systems System Programming in Windows

System Programming in Windows

* Naming in Windows: Kernel Objects and Kernel
Object Handles

* Processes, Jobs, Threads

* Synchronization

Kernel Objects

Whenever you want to access a kernel entity (file,
process, semaphore, etc.) you request a kernel object.

- Access token object

- File object

- File mapping object

- Job object

- Mutex object

- Pipe object

- Process object

- Semaphore object

- Thread object

- Waitable timer object




CSCE Intro to Computer Systems System Programming in Windows

Object Lifetime and Garbage Collection

* Objects can be accessed from multiple processes.
+ Counters keep track of that.

counter

ernel object

Creating Kernel Objects




CSCE Intro to Computer Systems System Programming in Windows

Closing Kernel Objects

// Indicate to the system that you
// are done manipulating the object.

BOOL CloseHandle (HANDLE hObject) ;

Note: Application may leak objects, but
when process terminates, handles are
closed.

Sharing Kernel Objects

* Q: How do we share pipes, semaphores, efc. across
processes?

“Share by Handle Inheritance”
“Share by Name”

“Share by Handle Duplication”




CSCE Intro to Computer Systems System Programming in Windows

“Share by Name”

“Share by Handle Duplication”




CSCE Intro to Computer Systems System Programming in Windows

Writing an Application

* Applications can be window-based or console-based.

Creating a Process

Note: Windows does not maintain a parent-child
relationship between processes.




CSCE Intro to Computer Systems System Programming in Windows

JO bS (hey, something new!)

Q: How to manage multiple process as a group without parent-
child relationship?

Q: How to define constraints on group of processes?
- e.g. max CPU utilization for an application

Solution: Cluster processes into groups: Jobs

Threads

Note:
+ Some variables in C/C++ run time libraries may be shared across
threads, thus causing race conditions.
- errno, _doserrno, strtok, ...

Therefore, for multithreaded C/C++ programs to run properly,
local data structures must be allocated for new thread that uses
run time library.

Therefore, rather than calling CreateThread, use
_beginthreadx.




CSCE Intro to Computer Systems System Programming in Windows

Thread Synchronization in User Mode

+ Atomic Access: Interlocked
« Critical Sections
+ Slim Reader-Writer Locks

« Condition Variables

Interlocked Operations




CSCE Intro to Computer Systems System Programming in Windows

Interlocked Operations

Critical Sections




CSCE Intro to Computer Systems System Programming in Windows

Condition Variables

Thread Synchronization with Kernel Objects

* Wait functions

- Event kernel objects

+ Waitable timer kernel objects
+ Semaphore kernel objects

* Mutex kernel objects




CSCE Intro to Computer Systems System Programming in Windows

Thread Synchronization with Kernel Object

* Most kernel objects (events, waitable timer, threads,
jobs, processes, semaphores, mutexes) can be in
signaled or non-signaled mode.

Event Kernel Objects

Recall: We wait with WaitForSingleEvent(...).

10



CSCE Intro to Computer Systems System Programming in Windows

Waitable Timer Kernel Objects

Semaphores and Mutexes

We gain access to semaphore and mutex by calling wait function. We
release them by calling ReleaseMonitor or ReleaseMutex function.

11



CSCE Intro to Computer Systems System Programming in Windows

Synchronous and Asynchronous Device I/0

* Synchronous I/0: easy.
* Asynchronous I/0:
- The OVERLAPPED structure

- I/0 Completion ports (tricky!)

The Windows Thread Pool

* Call a function asynchronously
+ Call a function at a timed interval

* Call a function when a single Kernel Object becomes
signaled

+ Call a function when asynchronous I/0 requests
complete

12



CSCE Intro to Computer Systems

System Programming in Windows

Other Topics...

* Fibers

+ Virtual Memory

* Memory-Mapped Files

*+ Dynamically Linked Libraries

+ .. and that’ s about it!

THANK YOU!

13



