CSCE Intro to Computer Systems System Programming in Windows

System Programming in Windows

* Naming in Windows: Kernel Objects and Kernel
Object Handles

* Processes, Jobs, Threads

* Synchronization

Kernel Objects

Whenever you want to access a kernel entity (file,
process, semaphore, etc.) you request a kernel object.

- Access token object

- File object

- File mapping object

- Job object

- Mutex object

- Pipe object

- Process object

- Semaphore object

- Thread object

- Waitable timer object
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Object Lifetime and Garbage Collection

* Objects can be accessed from multiple processes.
+ Counters keep track of that.

counter

ernel object

Creating Kernel Objects
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Closing Kernel Objects

// Indicate to the system that you
// are done manipulating the object.

BOOL CloseHandle (HANDLE hObject) ;

Note: Application may leak objects, but
when process terminates, handles are
closed.

Sharing Kernel Objects

* Q: How do we share pipes, semaphores, efc. across
processes?

“Share by Handle Inheritance”
“Share by Name”

“Share by Handle Duplication”
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“Share by Name”

“Share by Handle Duplication”
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Writing an Application

* Applications can be window-based or console-based.

Creating a Process

Note: Windows does not maintain a parent-child
relationship between processes.
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JO bS (hey, something new!)

Q: How to manage multiple process as a group without parent-
child relationship?

Q: How to define constraints on group of processes?
- e.g. max CPU utilization for an application

Solution: Cluster processes into groups: Jobs

Threads

Note:
+ Some variables in C/C++ run time libraries may be shared across
threads, thus causing race conditions.
- errno, _doserrno, strtok, ...

Therefore, for multithreaded C/C++ programs to run properly,
local data structures must be allocated for new thread that uses
run time library.

Therefore, rather than calling CreateThread, use
_beginthreadx.
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Thread Synchronization in User Mode

+ Atomic Access: Interlocked
« Critical Sections
+ Slim Reader-Writer Locks

« Condition Variables

Interlocked Operations
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Interlocked Operations

Critical Sections
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Condition Variables

Thread Synchronization with Kernel Objects

* Wait functions

- Event kernel objects

+ Waitable timer kernel objects
+ Semaphore kernel objects

* Mutex kernel objects
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Thread Synchronization with Kernel Object

* Most kernel objects (events, waitable timer, threads,
jobs, processes, semaphores, mutexes) can be in
signaled or non-signaled mode.

Event Kernel Objects

Recall: We wait with WaitForSingleEvent(...).
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Waitable Timer Kernel Objects

Semaphores and Mutexes

We gain access to semaphore and mutex by calling wait function. We
release them by calling ReleaseMonitor or ReleaseMutex function.
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Synchronous and Asynchronous Device I/0

* Synchronous I/0: easy.
* Asynchronous I/0:
- The OVERLAPPED structure

- I/0 Completion ports (tricky!)

The Windows Thread Pool

* Call a function asynchronously
+ Call a function at a timed interval

* Call a function when a single Kernel Object becomes
signaled

+ Call a function when asynchronous I/0 requests
complete
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Other Topics...

* Fibers

+ Virtual Memory

* Memory-Mapped Files

*+ Dynamically Linked Libraries

+ .. and that’ s about it!

THANK YOU!
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