
1

CPSC 313: Intro to Computer Systems POSIX Threads

POSIX Threads

•  Why Threads?

–  Latency Hiding / Multiprogramming (covered earlier)

–  Ease of Programming (covered now)

•  POSIX Threads (Stevens, Chapter 11)

–  Thread Management

–  Thread Safety

–  Thread Attributes

POSIX Threads

•  Why Threads?

–  Latency Hiding / Multiprogramming (covered earlier)

–  Ease of Programming (covered now)

•  POSIX Threads (R&R, Chapter 12)

–  Thread Management

–  Thread Safety

–  Thread Attributes

2

CPSC 313: Intro to Computer Systems POSIX Threads

Why Threads?

•  Many interactive applications run

in loops.

•  For example, an interactive game.

•  Reference [B.O. Gallmeister,
“POSIX.4, Programming for the
Real World,” O’Reilly&Assoc.,
Inc.]

while (1) {
 /* Read Keyboard */

 /* Recompute Player Position */

 /* Update Display */

}

Why Threads?

•  Many interactive applications run

in loops.

•  For example, an interactive game.

•  Reference [B.O. Gallmeister,
“POSIX.4, Programming for the
Real World,” O’Reilly&Assoc.,
Inc.]

while (1) {
 /* Synchronize to Highest
 Frequency */

 /* Read Keyboard */

 /* AND Read Mouse */

 /* Recompute Player Position */

 /* Update Display */

 /* AND emit sounds */
}

3

CPSC 313: Intro to Computer Systems POSIX Threads

Why Threads?

•  Many interactive applications run

in loops.

•  For example, an interactive game.

•  Reference [B.O. Gallmeister,
“POSIX.4, Programming for the
Real World,” O’Reilly&Assoc.,
Inc.]

while (1) {
 /* Synchronize to Highest
 Frequency */

 /* Read Keyboard */

 /* AND Read Mouse */

 /* Recompute Player Position */

 /* Update Display */

 /* AND all other lights */
 /* AND emit sounds */

 /* AND more sounds */
 /* AND move game physically */

}

Suddenly, application is getting complex!

•  It ain’t over yet!

•  What about compute-intensive

operations, like AI, video
compression?

•  How about Signal Handlers?

Reading the Mouse

while (1) {
 /* Synchronize to Highest
 Frequency */

 /* Read Keyboard */
 /* AND Read Mouse */
 /* Recompute Player Position */
 /* Update Display */

 /* AND all other lights */
 /* AND emit sounds */

 /* AND more sounds */

 /* AND move game physically */
}

read_mouse() {

}

4

CPSC 313: Intro to Computer Systems POSIX Threads

Reading the Mouse (II)

while (1) {
 /* Synchronize to Highest
 Frequency */

 /* Read Keyboard */
 /* AND Read Mouse */
 /* Recompute Player Position */
 /* Update Display */

 /* AND all other lights */
 /* AND emit sounds */

 /* AND more sounds */

 /* AND move game physically */
}

int main() {
 handle_mouse() {

 }
}

Separate Process

fork()

Reading the Mouse (III)

while (1) {
 /* Synchronize to Highest
 Frequency */

 /* Read Keyboard */
 /* AND Read Mouse */
 /* Recompute Player Position */
 /* Update Display */

 /* AND all other lights */
 /* AND emit sounds */

 /* AND more sounds */

 /* AND move game physically */
}

handle_mouse() {

}

Separate Thread

5

CPSC 313: Intro to Computer Systems POSIX Threads

The Thread and its Creation

while (1) {
 /* Synchronize to Highest
 Frequency */

 /* Read Keyboard */
 /* AND Read Mouse */
 /* Recompute Player Position */
 /* Update Display */

 /* AND all other lights */
 /* AND emit sounds */

 /* AND more sounds */

 /* AND move game physically */
}

/* The Mouse Input Function */

void * handle_mouse() {
 char buf[BUFSIZE]; ssize_t nbytes;
 for (;;) {
 if ((nbytes = read_from_mouse(buf,BUFSIZE)) <= 0)
 break;
 dosomething_with(buf, nbytes);
 }
 return NULL;
}

/* The Mouse Input Function */

void * read_mouse() {
 char buf[BUFSIZE]; ssize_t nbytes;
 for (;;) {
 if ((nbytes = read_from_mouse(buf,BUFSIZE)) <= 0)
 break;
 dosomething_with(buf, nbytes);
 }
 return NULL;
}

The Thread and its Creation

#include <pthread.h>

int error;

pthread_t tid;

if (error = pthread_create(&tid, NULL, handle_mouse, NULL))
 perror(“Failed to create read_mouse thread”);

for(;;) {

 /* Synchronize to Highest
 Frequency */

 /* Read Keyboard */

 /* AND Read Mouse */ <- Handled by separate thread!
 /* Recompute Player Position */

 /* Update Display */

 /* AND all other lights */

 /* AND emit sounds */

 /* AND more sounds */

 /* AND move game physically */

}

6

CPSC 313: Intro to Computer Systems POSIX Threads

Thread Management

•  pthread_cancel (terminate another thread)

•  pthread_create (create a thread)

•  pthread_detach (have thread release res’s)

•  pthread_equal (two thread id’s equal?)

•  pthread_exit (exit a thread)

•  pthread_kill (send a signal to a thread)

•  pthread_join (wait for a thread)

•  pthread_self (what is my id?)

Thread Management

•  pthread_cancel (terminate another thread)

•  pthread_create (create a thread)

•  pthread_detach (have thread release res’s)

•  pthread_equal (two thread id’s equal?)

•  pthread_exit (exit a thread)

•  pthread_kill (send a signal to a thread)

•  pthread_join (wait for a thread)

•  pthread_self (what is my id?)

int pthread_create(pthread_t * thread,
 const pthread_attr_t * attr,

 void *(*start_routine)(void *),

 void * arg)

fd = open(“my.dat”, O_RDONLY);

if (error = pthread_create(&t_id, NULL, processfd, &fd))
 fprintf(stderr, “Failed create thread: %s\n”, strerror(error));

7

CPSC 313: Intro to Computer Systems POSIX Threads

Thread Attributes

atribute objects
 pthread_attr_destroy

pthread_attr_init

state
 pthread_attr_getdetachstate
pthread_attr_setdetachstate

stack
 pthread_attr_getguardsize
pthread_attr_setguardsize
pthread_attr_getstack
pthread_attr_setstack

scheduling
 pthread_attr_getinheritedsched
pthread_attr_setinheritedsched
pthread_attr_getschedparam
pthread_attr_setschedparam
pthread_attr_getschedpolicy
pthread_attr_setschedpolicy
pthread_attr_getscope
pthread_attr_setscope

Thread Attributes: State

atribute objects
 pthread_attr_destroy

pthread_attr_init

state
 pthread_attr_getdetachstate
pthread_attr_setdetachstate

stack
 pthread_attr_getguardsize
pthread_attr_setguardsize
pthread_attr_getstack
pthread_attr_setstack

scheduling
 pthread_attr_getinheritedsched
pthread_attr_setinheritedsched
pthread_attr_getschedparam
pthread_attr_setschedparam
pthread_attr_getschedpolicy
pthread_attr_setschedpolicy
pthread_attr_getscope
pthread_attr_setscope

•  Detached threads release
resources when terminate.

•  Attached states hold on to
resources until parent thread
calls pthread_join.

8

CPSC 313: Intro to Computer Systems POSIX Threads

Thread Attributes: Stack

atribute objects
 pthread_attr_destroy

pthread_attr_init

state
 pthread_attr_getdetachstate
pthread_attr_setdetachstate

stack
 pthread_attr_getguardsize
pthread_attr_setguardsize
pthread_attr_getstack
pthread_attr_setstack

scheduling
 pthread_attr_getinheritedsched
pthread_attr_setinheritedsched
pthread_attr_getschedparam
pthread_attr_setschedparam
pthread_attr_getschedpolicy
pthread_attr_setschedpolicy
pthread_attr_getscope
pthread_attr_setscope

•  setstack defines location and size
of stack.

•  setguardsize allocates additional
memory. If the thread overflows
into this extra memory, an error
is generated.

Thread Attributes: Scheduling

atribute objects
 pthread_attr_destroy

pthread_attr_init

state
 pthread_attr_getdetachstate
pthread_attr_setdetachstate

stack
 pthread_attr_getguardsize
pthread_attr_setguardsize
pthread_attr_getstack
pthread_attr_setstack

scheduling
 pthread_attr_getinheritedsched
pthread_attr_setinheritedsched
pthread_attr_getschedparam
pthread_attr_setschedparam
pthread_attr_getschedpolicy
pthread_attr_setschedpolicy
pthread_attr_getscope
pthread_attr_setscope

•  PTHREAD_INHERIT_SCHED defines that scheduling
parameters are inherited from parent thread. (as opposed to
PTHREAD_EXPLICIT_SCHED).

•  Scheduling policies: SCHED_FIFO, SCHED_RR,
SCHED_SPORADIC, SCHED_OTHER, …

•  contention scope defines whether process competes at
process level or at system level for resources.

