
1 

CPSC 313: Intro to Computer Systems Programs, Processes, Threads 

Programs, Processes, Threads





Reading: Stevens - Chapters 7/8



(Focus on 7.1-7.6 , 8.1-8.6 , 8.10 )


Processes Management


•  What is a process?�



•  How to control processes.�



•  How to allocate the available resources to the 
execution of the processes (scheduling)�



•  How to coordinate processes among themselves 
(synchronization)�





2 

CPSC 313: Intro to Computer Systems Programs, Processes, Threads 

Processes and Process Control


•  Q: What is a process?


•  A:


–  Process as execution of a Program�



– We can trace the execution of a process


–  Process as minimal entity for resource allocation �
(for example memory).


Simple Memory Layout of a Running Program


command-line arguments�
 and environment variables


stack


program text


initialized static data


uninitialized static data


heap


high address


low address




3 

CPSC 313: Intro to Computer Systems Programs, Processes, Threads 

The Execution Trace of Processes

•  Two processes and a 

dispatcher


program A


α 

dispatcher 
δ 

β 

program B


α 
α+1 
α+2 
α+3 
α+4 
α+5 
α+6 
α+7 
α+8 
α+9 
α+10 
α+11 

β 
β+1 
β+2 
β+3 
β+4 
β+5 
β+6 
β+7 
β+8 
β+9 
β+10 
β+11 

δ 
δ+1 
δ+2 
δ+3 
δ+4 

Trace of dispatcher


Traces of processes A and B

β 
β+1 
β+2 
β+3 
β+4 
δ 
δ+1 
δ+2 
δ+3 
δ+4 
α 
α+1 
α+2 
α+3 
α+4 
δ 
δ+1 
δ+2 
δ+3 
δ+4 
β+5 
β+6 
β+7 
... 

States of a Process

•  User view: A process is executing continuously

•  In reality: Several processes compete for the CPU and other 

resources

•  A process may be


–  running: it holds the CPU and is executing instructions


–  blocked: it is waiting for some I/O event to occur


–  ready: it is waiting to get back on the CPU


ready
 running


blocked


terminate
create

preempt


dispatch


I/O request
I/O complete




4 

CPSC 313: Intro to Computer Systems Programs, Processes, Threads 

Process Creation


•  When? 

–  Submission of a batch job

– User logs on

–  Create process to provide service such as printing

–  Spawned by existing processes


•  How?

–  In UNIX: �

all processes created by fork() system call


Example: Vanilla Command Interpreter


char command[MAX_COMMAND_LENGTH]; 

do { 
  command = read_command(stdin); 

  if (fork() != 0) { 
    /* parent */ 
    if (last_char(command) != ‘&’) { 
      /* run in foreground, i.e. wait */ 
      waitpid(-1, &status, ...); 
    } 

  } 

  else { 
    /* child */ 
    execve(command, ...); 
  } 

} while (strcmp(command, “exit”) != 0); /* ?!? */ 
 



5 

CPSC 313: Intro to Computer Systems Programs, Processes, Threads 

Suspended Processes


start


suspended

ready


suspended

blocked
 blocked


ready
 running


Processes in UNIX


created


ready

swapped


sleep

swapped


sleep in

memory


ready
 kernel

running


fork()


user

running


preempted


zombie


enough

memory


not

enough

memory


swap in


swap out


wakeup


swap out


wakeup


reschedule

process


sleep
 exit


interrupt

system call


return


return to 

user


preempt




6 

CPSC 313: Intro to Computer Systems Programs, Processes, Threads 

The Process Control Block (PCB)


•  Mechanism of a process switch:


•  The PCB contains all information specific to a process.


Preempt Process A and store

all relevant information.


Load information about

Process B and continue execution


Preempt Process B and store

all relevant information.


Load information about

Process A and continue execution


(id
le
)


(id
le
)


(id
le
)


Process A
 Process B


process identification


processor state 

information


process control

information


Process Control Block


Example for the Use of PCBs:  Process Queues


ready running 

waiting 
ready queue
 executing process


I/O device queues


disk 1


disk 2


serial I/O




7 

CPSC 313: Intro to Computer Systems Programs, Processes, Threads 

Programs, Processes, Threads


•  Programs, Processes, and Threads


•  Processes and Threads in UNIX


Threads

•  Traditionally, processes interact very little:


•  This is not true in modern systems: Some applications 
may want to have multiple, tightly-coupled “processes”. 

kernel


processes as jobs

in batch queue


user processes




8 

CPSC 313: Intro to Computer Systems Programs, Processes, Threads 

Problems with traditional (heavy-weight) processes


•  Heavy-weight processes have separate 
address spaces.

–  Process creation is expensive

–  Process switch is expensive

–  Sharing memory among processes is 

non-trivial


user

stack


data segment


kernel

stack


PCB


Process


•  Threads share address space:

–  Thread creation much simpler than 

process creation (no need to create 
and initialize address space, etc.)


–  Thread switch simple

–  Threads fully share the address 

space�



•  Convenience

–  communication between threads


•  Efficiency

–  multiprogramming within a process

–  multiprocessors


data segment
PCB


user

stack


kernel

stack


TCB


user

stack


kernel

stack


TCB


...


Threads


thread
 thread




9 

CPSC 313: Intro to Computer Systems Programs, Processes, Threads 

User-Level vs. Kernel-Level Threads


P


threads 

library


P


User-Level Threads

kernel is not aware of threads


Kernel-Level Threads

all thread management done in kernel


Potential Problems with Threads


•  General: Several threads run in the same address space:

–  Protection must be explicitly programmed (by appropriate thread 

synchronization)

–  Effects of misbehaving threads limited to task


•  User-level threads: Some problems at the interface to the kernel: With 
a single-threaded kernel, as system call blocks the entire task.


task
 kernel


system call


thread is blocked in kernel

(e.g. waiting for I/O)




10 

CPSC 313: Intro to Computer Systems Programs, Processes, Threads 

Singlethreaded vs. Multithreaded Kernel


•  Protection of kernel data 
structures is trivial, since only 
one process is allowed to be in 
the kernel at any time.


•  Special protection mechanism is 
needed for shared data 
structures in kernel.


Light-weight Processes


CPUs


kernel


processes

user-level threads


light-weight

processes


kernel threads



