CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Programs, Processes, Threads

Reading: Stevens - Chapters 7/8

(Focus on 7.1-7.6 , 8.1-8.6 , 8.10)

Processes Management

e What is a process?
e How to control processes.

e How to allocate the available resources to the
execution of the processes (scheduling)

e How to coordinate processes among themselves
(synchronization)

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Processes and Process Control

e Q: What is a process?
° A:
- Process as execution of a Program
- We can frace the execution of a process

- Process as minimal entity for resource allocation
(for example memory).

Simple Memory Layout of a Running Program

high address command-line arguments
and environment variables

..............................

................................

uninitialized static data

initialized static data

low address program text

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

The Execution Trace of Processes
B
¢ T.wo processes and a Traces of processes A and B EE
dispatcher B3
a B
atl Br1 pt4
at2 p+2 o
a3 B3 o+l
atd pr4 542
ats B+5 6+3
at6 B+6 o+4
at7 p+7 Qa
ot8 B+8 atl
a9 B+9 at2
arl10 B+10 at3
atll Br1l g+4
Trace of dispatcher gié
S 0+3
6+1 6+4
) 5
6+3 p+6
ot4 pt7

States of a Process

e User view. A process is executing contfinuously

e In reality: Several processes compete for the CPU and other
resources

e A process may be
- running: it holds the CPU and is executing instructions
- blocked: it is waiting for some I/0 event to occur

- ready: it is waiting to get back on the CPU

create —' —' terminate

dispatch /
1/0 complete 1/0 request
blocked

preempt

CPSC 313: Intro to Computer Systems

Programs, Processes, Threads

Process Creation

e When?

- User logs on

e How?
- In UNIX:
all processes

- Submission of a batch job

- Create process to provide service such as printing
- Spawned by existing processes

created by fork() system call

Example: Vanilla Command Interpreter

do {

/* parent */
if (last_char

waitpid (-1,
}
}
else {
/* child */

}

char command[MAX COMMAND LENGTH] ;

command = read command (stdin) ;
if (fork() != 0) {

/* run in foreground, i.e. wait */

execve (command, ...);

} while (strcmp (command, “exit”) != 0); /* 212 */

(command) !'= ‘&) {

&status, ...);

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Suspended Processes

/

suspended*——
read _—

|

Suspended
blocked blocked

Processes in UNIX

preempted

return to
user

preempt

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

The Process Control Block (PCB)

e Mechanism of a process switch:

Process A Process B.
s
]
h Preempt. Process.A.and. store. . I~
I al relevant information. i } % process identification
} S
| Load information about " I
‘I Process B and continue execu’rlon
I~
'3 processor state
1= information
} Preempt Process B and store .
| all relevant information. \
I h,
I |,
} Load information apouf . } 1} process control
Process A and continue execution I . .
IS information
|
!
Process Control Block

e The PCB contains all information specific to a process.

Example for the Use of PCBs: Process Queues

ready queue executing process

N

disk 1

_ S

A e e aisk 2 == 1/0 device queues

’

‘l
’—D+—[|+—[| serial 1/0

*®

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Programs, Processes, Threads

e Processes and Threads in UNIX

Threads

e Traditionally, processes interact very little:

processes as jobs
in batch queue

user processes

kernel

+ This is not ftrue in modern systems: Some applications
may want to have multiple, tightly-coupled "processes”.

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Problems with traditional (heavy-weight) processes

Process e Heavy-weight processes have separate
address spaces.
user L .
- Process creation is expensive
stack]))
- Process switch is expensive
kernel - Sharing memory among processes is
stack non-trivial

PCB | | data segment

Threads

e Threads share address space:

thread thread - Thread creation much simpler than
____________________________________ process creation (no need to create
E : and initialize address space, efc.)
: e P TCB - Thread switch simple
user | user | - Threads fully share the address
; stack |} ..} stack |} space
kernel kernel e Convenience
' stack |1 stack |1 - communication between threads
e Efficiency
PCB data segment - multiprogramming within a process
- multiprocessors

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

User-Level vs. Kernel-Level Threads

User-Level Threads Kernel-Level Threads
kernel is not aware of threads all thread management done in kernel

%%VE :
|
é

!

® General: Several threads run in the same address space:

- Protection must be explicitly programmed (by appropriate thread
synchronization)

- Effects of misbehaving threads limited to task

e User-level threads: Some problems at the interface to the kernel: With
a single-threaded kernel, as system call blocks the entire task.

thread is blocked in kernel
(e.g. waiting for 1/0)

AVATAT S system call | | DN |

fask kernel

CPSC 313: Intro to Computer Systems Programs, Processes, Threads

Singlethreaded vs. Multithreaded Kernel

e EeE

3

1
1
1
1
1
T
v

<-4 -

|
1
1
1
|
T
1
v

—ten —t !
e Protection of kernel data ® Special protection mechanism is
structures is trivial, since only needed for shared data
one process is allowed to be in structures in kernel.

the kernel at any time.

Light-weight Processes

processes
E § E E § E E é—— user-level threads
N\ A 4 N

W X i \/ s light-weight

000000 e e
= o o

CPUs

10

