
CPSC-662 Distributed Computing Distr Coord

1

Distributed Coordination

• What makes a system distributed?
• Time in a distributed system
• How do we determine the global state of a distributed

system?
• Event ordering
• Mutual exclusion

• Reading: Silberschatz, Chapter 18, Sections 1,2,6

Distr. Systems: Fundamental Characteristics

1. Multiple processors (wlog: assume one process per
processor)

2. No shared memory
3. No common clock
4. Communication delays are not constant
5. Message ordering may not be maintained by the

underlying communication infrastructure

CPSC-662 Distributed Computing Distr Coord

2

Effects of Lack of Common Clock
Example 1 : Distributed make utility (e.g. pmake)
• make goes through all target files and determines (based on timestamps)

which targets need to be “(re)compiled”
• Example:

main : main.o

 cc -o main main.o

main.o : main.c

 cc -c main.c

2144

2144 2145 2146

2148214721462145

21432142

Time according
to local clock

Time according
to local clock

Computer on
which compiler

runs

Computer on
which editor

runs

main.o created

main.c created

Effects of Lack of Common Clock

• Example 2 : Distributed Checkpointing
• “At 3pm everybody writes its state to stable storage.”
• Centralized system:

• Distributed System:

rriiing!

rriiing!

rriiing!

CPSC-662 Distributed Computing Distr Coord

3

Distributed Checkpointing (2)

rriiing!

rriiing!

“transfer $100”

Sb=$100

3:00

Sa=$100

3:00

3:01

2:59

rriiing!

rriiing!
“transfer $100”

Sb=$0

3:00

Sa=$0

3:00

2:59

3:01

Consistent vs. Non-Consistent Global States

inconsistent global state (why?)

consistent global state

CPSC-662 Distributed Computing Distr Coord

4

Distributed Snapshot Algorithm

• Process P starts algorithm:
– saves state SP

– sends out marker messages to all other processes
• Upon receipt of a marker message (from process Q), process P

proceeds as follows (atomically: no messages sent/received in the
meantime):
– 1. Saves local state SP.
– 2. Records state of incoming channel from Q to P as empty.
– 3. Forward marker message on all outgoing channels.

• At any time after saving its state, when P receives a marker from
a process R:
– Save state SCRP as sequence of messages received from R since

P saved local state SP to when it received marker from R.

Comments

• Any process can start algorithm. Even multiple processes can start
it concurrently.

• Algorithm will terminate if message delivery time is finite.
• Algorithm is fully distributed.
• Once algorithm has terminated, consistent global state can be

collected.

• Relies on ordered, reliable message delivery.

CPSC-662 Distributed Computing Distr Coord

5

Event Ordering

• Absence of central time means: no notion of happened-when (no total
ordering of events)

• But can generate a happened-before notion (partial ordering of events)
• Happened-Before relation:

1. Pi

A B

Event A happened-before Event B. (A -> B)

2. Pi

A

Event A happened-before Event B. (A -> B)

Pj

B

message

3. Pi

A

Event A happened-before Event C. (A -> C) (transitivity)

Pj

B

message

C

Concurrent Events

• What when no happened-before relation exists between two
events?

Pi

A

Events X and Y are concurrent.

Pj

B C

DX

Y

?

CPSC-662 Distributed Computing Distr Coord

6

Happened-Before Ordering: Implementation

• Define a Logical Clock LCi at each Process Pi.
• Used to timestamp each event:

– Each event on Pi is timestamped with current value of logical
clock LCi .

– After each event, increment LCi.
– Timestamp each outgoing message at Pi with value of LCi.
– When receiving a message with timestamp t at process Pj,

set LCj to max(t, LCj)+1.

Pi

Pj

LCj

LCi 0 1 2 3 4

0 1 2

msg(1)

201

201

msg(200)

160

200

Application to Distributed Checkpointing

“At logical-clock time 5000 write state
to stable storage!”

4999 5000 5001

4890 4891 4892

5002

msg(A,4891) msg(B,5002)

5003

+

5002

Receiving Msg B
would be inconsistent.
So, checkpoint first,
and then receive!

CPSC-662 Distributed Computing Distr Coord

7

Distributed Mutual Exclusion

• Reminder: Mutual exclusion in shared-memory systems:

bool lock; /* init to FALSE */

while (TRUE) {

 while (TestAndSet(lock)) no_op;

 critical section;

 lock = FALSE;

 remainder section;

}

D.M.E.: Centralized Approach

1. Send request message to coordinator to enter C.S.
2. If C.S. is free, the coordinator sends a reply message. Otherwise it

queues request and delays sending reply message until C.S. becomes
free.

3. When leaving C.S., send a release message to inform coordinator.

• Characteristics:
– ensures mutual exclusion
– service is fair
– small number of messages required
– fully dependent on coordinator

coordinator

P1 P2 P3

1

2
3

CPSC-662 Distributed Computing Distr Coord

8

D.M.E.: Fully Distributed Approach

• Basic idea: Before entering C.S., ask and wait until you get
permission from everybody else.

request(Pi,TS)

reply
Pi

• Upon receipt of a message request(Pj, TSj) at node Pi:
• if Pi does not want to enter C.S., immediately send a reply

to Pj.
• if Pi is in C.S., defer reply to Pj.
• if Pi is trying to enter C.S., compare TSi with TSj. If TSi >

TSj (i.e. “Pj asked first”), send reply to Pj; otherwise defer
reply.

Fully Distributed Approach:Example

• P1 and P3 want to enter C.S.

P1 P2 P3
req(P1,10)

req(P1,10)

req(P3,4)

req(P3,4)

reply

reply

reply

Enter C.S.reply

Enter C.S.

CPSC-662 Distributed Computing Distr Coord

9

D.M.E. Fully Distributed Approach

• The Good:
– ensures mutual exclusion
– deadlock free
– starvation free
– number of messages per critical section: 2(n-1)

• The Bad:
– The processes need to know identity of all other processes

involved (join & leave protocols needed)

• The Ugly:
– One failed process brings the whole scheme down!

D.M.E.: Token-Passing Approach

• Token is passed from process to process (in logical ring)
• Only processes owning a token can enter C.S.
• After leaving the C.S., token is forwarded

Pi

token

• Characteristics:
• mutual exclusion guaranteed

• no starvation

• number of messages per C.S.
varies

• Problems:
• Process failure (new logical

ring must be constructed)

• Loss of token (new token
must be generated)

CPSC-662 Distributed Computing Distr Coord

10

Recovering Lost Tokens

• Solution: use two tokens!
– When one token reaches Pi, the other token has been lost if

the token has not met the other token since last visit
and

Pi has not been visited by other token since last visit.

• Algorithm:

– uses two tokens, called “ping” and “pong”
int nping = 1; /*invariant: nping+npong = 0 */

int npong = -1;

– each process keeps track of value of last token it has seen.
int m = 0; /* value of last token seen by Pi */

“Ping-Pong” Algorithm

if (m == nping) {

 /* “pong” is lost!

 generate new one. */

 nping = nping + 1;

 pong = - nping;

}

else {

 m = nping;

}

upon arrival of (“ping”, nping)

if (m == npong) {

 /* “ping” is lost!

 generate new one. */

 npong = npong - 1;

 ping = - npong;

}

else {

 m = npong;

}

upon arrival of (“pong”, npong)

 nping = nping + 1;

 npong = npong - 1;

when tokens meet

CPSC-662 Distributed Computing Distr Coord

11

Election Algorithms

• Many distributed algorithms rely on coordinator.
• Coordinator may fail. Then system must start a new coordinator
• Election algorithms determine where the new coordinator will be

located.
• Remarks:

– Each process has a priority number (wlog Pi has priority i)
– Election algorithm picks active process with highest priority

and informs all active processes about new coordinator.
– Newly recovered process should be able to identify current

coordinator.

Election: The Bully Algorithm (Garcia-Molina)

• Process Pi times out during a request to coordinator; assumes
that coordinator has failed.

• Pi proceeds to elect itself as coordinator by sending elect(i)
message to higher-priority processes.
– If receives no response, considers itself elected and informs

all lower-priority processes with a is_elected(i) message.
– If receives reply, waits to hear who has been elected. If

times out, assumes that something went wrong (processes
failed), and restarts from scratch.

• At process Pi:
– message is_elected(j) comes in (j > i): record information
– message elect(j) comes in:

• if (i < j) wait and see
• if (i > j) send response to Pj and start own election

campaign.
• If process recovers from failure, starts new election campaign.

CPSC-662 Distributed Computing Distr Coord

12

Bully Algorithm: Example

P1 P2 P3 P4

fails fails

elect(2)
response

elect(3)

is_elected(3)

is_elected(3)

P1 recovers

elect(1)
elect(1)

elect(1)
response

response

elect(2)
elect(2)

elect(3)

is_elected(3)

is_elected(3)

X

Election: Ring Algorithm

• Basic version:
– Each process Pi sends its own election message elect(i) around the ring.
– All processes send their own number before passing on election messages of

other processes.
– When its own message returns, Pi knows it has seen all the messages.

• How many messages are needed per election round?

Pi

elect(i)

