CPSC 410 /611 : Operating Systems

CPSC 410/611: File Management

* What is a file?

* Elements of file management
- File organization

- Directories

* File allocation

+ UNIX file system

* Reading: Silberschatz, Chapter 10, 11

What is a File?

A file is a collection of data elements, grouped together for
purpose of access control, retrieval, and modification

Often, files are mapped onto physical storage devices, usually
nonvolatile.

Some modern systems define a file simply as a sequence, or
stream of data units.

A file system is software responsible for

- creating, destroying, reading, writing, modifying, moving files
- controlling access to files

- management of resources used by files.

CPSC 410 /611 : Operating Systems

The Logical View of File Management

user

ﬂ «—— - directory management

i
file structure + access control

ﬂ «—— - access method

I
I

physical blocks in memory

DDDEDDD

Juooott

records

* blocking

+ disk scheduling
+ file allocation

Logical Organization of a File

A file is perceived as an ordered collection of records, Ry, R, ...,
R

-
A record is a contiguous block of information transferred during
a logical read/write operation.

Records can be of fixed or variable length.
Organizations:

- Pile

Sequential File

Indexed Sequential File

Indexed File

Direct/Hashed File

CPSC 410 /611 : Operating Systems

Pile

Variable-length records
Chronological order
Random access to record by

search of whole file.

What about modifying records? [

Pile File

Sequential File

Fixed-format records
Records often stored in order key field

of key field.

Good for applications that
process all records.

No adequate support for random
access.

What about adding new record?

Separate pile file keeps /og file

or transaction file.

Sequential File

CPSC 410 /611 : Operating Systems

Indexed Sequential File

Similar to sequential file,
with two additions.
- Index to file supports index
random access.
- Overflow file indexed —
from main file.
Record is added by
appending it to overflow file
and providing link from R
predecessor.

main file

v

overflow file

Indexed Sequential File

Indexed File

Multiple indexes
Variable-length records

Exhaustive index vs. partial
index

CPSC 410 /611 : Operating Systems

File Management

Directories user

§—

I

file structure + directory management

Directories

Large amounts of data: Partition and structure for easier access.
High-level structure:

- partitions in MS-DOS

- minidisks in MVS/VM

- file systems in UNIX.

Directories: Map file name to directory entry (basically a symbol
table).

Operations on directories:
- search for file

- create/delete file

- rename file

CPSC 410 /611 : Operating Systems

Directory Structures

+ Single-level directory:

directory | | | | | | | |

Lo b
e OO0 000O0

* Problems:
+ limited-length file names
* multiple users

Two-Level Directories

master direc*ory | userl | user2 | user3 I user4|

ol 1 JC I T 1 []

e T T T T TT 1T
O O

file O OO OO0 OO0

+ Path names

* Location of system files
+ special directory
+ search path

CPSC 410 /611 : Operating Systems

Tree-Structured Directories

[user | bin | pub |

[user] Juser2|user3| ... | | find |count] 1s | cp | [bin | mail | netsc Jopenw]

O

[bin [demo|ncludd ... |

| gec | gdb | xmt | v
¢ [xinit [xman] xmh |xterm|

vy oy
create subdirectories © 00 O O O O

current directory
path names: complete vs. relative

Generalized Tree Structures

- share directories and files

- keep them easily accessible
|userl|user2|user3| | |ﬁnd |count| Is | cp E(Iznénz | bin |mail |opwin|netsc|
I

| bin |demo| incl | |

Uxinit] gee | gdb | xmt]
I

v <«
(5 | xinit |xman| xmh |xterm|

Links: File name that, when referred, affects file to which it was
linked. (hard links, symbolic links)
Problems:

+ consistency, deletion

+ Why links to directories only allowed for system managers?

CPSC 410 /611 : Operating Systems

Bookkeeping

* Open file system call: cache information about file in kernel
memory:
- location of file on disk
- file pointer for read/write
- blocking information

—| open-file table |7

: Smgle—user SySfem: filel file pos file location
file2 file pos file location
© Multi-user system: —] system open-file table ———
— process open-file table }——— »opencnt | filepos |
filel file pos O
file2 file pos O—J1 open cnt | file pos |

File System Architecture: Virtual File System

system call layer
(file system interface) Example: Linux Virtual File System
l (VFS)
e Provides generic file-system interface
virtual file system layer (v-nodes) (separates from implementation)
e Provides support for network-wide identifiers

/ for files (needed for network file systems).

local UNIX file
system (i-nodes) Objects in VFS:
e inode objects (individual files)

o file objects (open files)

e superblock objects (file systems)

e dentry objects (individual directory entries)

CPSC 410 /611 : Operating Systems

File System Architecture: Virtual File System

system call layer .) .
(file system interface) Example: Linux Virtual File System

l (VFS)

e Provides generic file-system interface
(separates from implementation)

virtual file system layer (v-nodes)

e Provides support for network-wide identifiers

/ \ for files (needed for network file systems).

local UNIX file NFS client
system (i-nodes) (r-nodes) Objects in VFS:

e inode objects (individual files)

A

RPC client stub

e file objects (open files)

e superblock objects (file systems)

e dentry objects (individual directory entries)

File System Architecture: Virtual File System

system call layer .) .
(file system interface) Example: Linux Virtual File System

l (VFS)

e Provides generic file-system interface
(separates from implementation)

virtual file system layer (v-nodes)
e Provides support for network-wide identifiers

/ for files (needed for network file systems).
A

local UNIX file Flash Memory
system (i-nodes) File system Objects in VFS:
e inode objects (individual files)

o file objects (open files)

e superblock objects (file systems)

e dentry objects (individual directory entries)

CPSC 410/611:

Operating Systems

File Management

File allocation

physical blocks on disk [/l D E—

goooooa

+ file allocation

Allocation Methods

File systems manage disk resources
Must allocate space so that
- space on disk utilized effectively
- file can be accessed quickly
Typical allocation methods:
- contiguous
- linked
- indexed
Suitability of particular method depends on
- storage device technology

- access/usage patterns

10

CPSC 410 /611 : Operating Systems

Contiguous Allocation

— T
~— A

ojojajs
o[alcla
GRBlojo
oioiolo
o] [[[
) (] [] &
o =) @ @

Logical file mapped onto a sequence of adjacent
physical blocks.

Advantages:
- minimizes head movements
- simplicity of both sequential and direct
access.
- Particularly applicable to applications where
entire files are scanned.
Disadvantages:
- Inserting/Deleting records, or changing
length of records difficult.
- Size of file must be known a priori.
(Solution: copy file to larger hole if

file start end
file 1 9 23

~—— exceeds allocated size.)

file start _ length - External fragmentation

f"el 0 > - Pre-allocation causes internal

file2 10 2 fragmentation

file3 16 10

Linked Allocation

T
~— 0 @ — Scatter logical blocks throughout secondary

storage.
Link each block to next one by forward pointer.
May need a backward pointer for backspacing.
Advantages:
- blocks can be easily inserted or deleted
- no upper limit on file size necessary a
priori
- size of individual records can easily
change over time.
Disadvantages:
- direct access difficult and expensive
- overhead required for pointers in blocks
- reliability

11

CPSC 410 /611 : Operating Systems

Variations of Linked Allocation

file

start

end

filel

9

=M=

16 24 <

24 26 pE

26 10 :::]

Example: File-Allocation Tables (FAT)
in MS-DOS, 0S/2.

—
~—ro A
[o] [[
[+] [=] [e] [7]
[e] [B] [[1]

(

Maintain all pointers as a separate linked list, preferably in main
memory.

Indexed Allocation

file

[o] [1] [2] [5]
[4] [5] [¢] [|
[8] [8] o] [u]

index block

filel

7

Keep all pointers to blocks in one location:
index block (one index block per file)

910(16(24

26

10

23

]-1]-1

Advantages:

- supports direct access
- no external fragmentation

- therefore: combines best of continuous
and linked allocation.

Disadvantages:

- internal fragmentation in index blocks

Problem:

- what is a good size for index block?
- fragmentation vs. file length

12

CPSC 410/ 611 : Operating Systems

Solutions for the Index-Block-Size Dilemma

+ Linked index blocks:

> >
—> —>
—> —>
—> —>
—
+ Multilevel index scheme: ¥
—>
_>
_>
_>
—> —>
> R
— —
_>
_>
_>
—

Index Block Scheme in UNIX

direct

Y >
A R
]
0
=]
0
\4
9
10 [e > >
doubl >
[Jm —
12 'fr"iple A|:|
indirect

13

CPSC 410 /611 : Operating Systems

UNIX (System V) Allocation Scheme

1

Example:

block size: 1kB

access byte offset 9000

access byte offset 350000

808

367

367

/7' 333 816

9156 331 3333

9156

Free Space Management

* Must keep track where unused blocks are.
* Can keep information for free space management in

unused blocks.

- Bit vector:

Hl #H2 #H#3 #4 #H#E #H6 #HT7 #8
0

* Linked list: Each free block contains pointer fo next

free block.

+ Variations:

* Grouping: Each block has more than on pointer to
empty blocks.

- Counting: Keep pointer of first free block and
number of contiguous free blocks following it.

14

