CPSC410/611: Security

- Security
 - Security Attacks
 - Security Threats
 - Crypto
 - Authentication
- Examples
 - SSL

Security Threats

- Breach of confidentiality
 - unauthorized access to and/or dissemination of information
 - result of theft or illegal action of who has access to information
- Breach of integrity
 - unauthorized modification of data
- Information destruction:
 - loss of internal data structures
 - loss of stored information
 - information may be destroyed without being disclosed
- Unauthorized use of service:
 - bypass system accounting policies
 - unauthorized use of some proprietary services
 - obtain "free computing time"
- Denial of service:
 - prevent an authorized user from utilizing the system's services in a timely manner

Man-In-The-Middle: Example

- Passive tapping
 - Listen to communication without altering contents.
- Active wire tapping
 - Modify data being transmitted
 - Example:

Typical Attacks: Penetration Attempts

- Two basic forms:
 - completely bypass authentication mechanism
 - obtain information or alter the system so as to enter system as authorized user
- Attempts:
 - Wire tapping (active vs. passive)
 - Trial and error
 - Browsing
 - Search storage (in particular previously allocated, but now available) for unauthorized information.
 - Trap doors
 - Unspecified and undocumented features of the system that may be exploited to perform unauthorized actions.
 - Trojan horse
 - Searching of waste

Prototypical Security Attacks (Tanenbaum)

- Request memory or disk space and simply read it.
- Try illegal system calls, and/or with illegal parameters
- Start logging in and try to abort login sequence.
- Modify OS structures kept in user space.
- Look for "Do not do X". Try as many variations of X as you can think of.
- Trojan horses
- Trapdoors
- Bribe personnel

Famous (fixed) Security Flaws (Tanenbaum)

- Unix: lpr has option to delete file after is printed. So, print and remove password file.
- Unix: Link file called core to password file. Force core dump in program running with root privileges.
- Unix: The mkdir command runs with root privileges, creating i-node with system call mknod, then changes owner of directory with chown system call.
- TENEX: The "aligned password" trick.
- OS/360: To open file, OS verified password first. Then went to fetch filename. In the meantime, the filename could be overwritten by a DMA operation.

The Morris Worm (Nov 2nd, 1988) [Example and illustrations from Silberschatz et al. "Operating Systems Concepts" Ch. 15] Worm: A process that replicates itself and uses up system resources (tape worm) (The Shockwave Rider, J. Brunner 1975) Virus: Piece of code that adds itself to other programs. Cannot execute independently (When Charlie Was One, D. Gerrold 1972) • Morris Worm: first grand-scale attack on Internet. rsh attack grappling fingerd attack hook sendmail attack (bootstrap) worm worm infected system target system

Safeguards

- External safeguards:
 - control physical access to computing facility
 - badges, locks, sign-in procedures, ...
 - administrative mechanisms:
 - audit trails
 - threat monitoring
- Internal safequards:
 - Verification of user identity (Authentication)
 - Access control (e.g. at file-system level)
 - Information flow control:
 - It is not always necessary to access an object to get information. Sometimes information can be transferred or inferred.
 - Encryption

CPSC410/611: Security

- Security
 - Security Attacks
 - Security Threats
 - Crypto
 - Authentication
- Examples
 - SSL

Encryption

- Encryption algorithm consists of
 - Set of K keys
 - Set of M Messages
 - Set of C cyphertexts (encrypted messages)
 - A function $E: K \to (M \to C)$. That is, for each $k \in K$, E(k) generating ciphertexts from messages.
 - Both E and E(k) for any k should be efficiently computable functions.
 - A function $D: K \to (C \to M)$. That is, for each $k \in K$, D(k) is a function for generating messages from ciphertexts.
 - Both D and D(k) for any k should be efficiently computable functions.
- An encryption algorithm must provide this essential property:

Given a ciphertext $c \in C$, a computer can compute m such that E(k)(m) = c only if it possesses D(k).

- Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding D(k) cannot decrypt ciphertexts.
- Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive $\mathcal{D}(k)$ from the ciphertexts

Symmetric Encryption

- Same key used to encrypt and decrypt
 - E(k) can be derived from D(k), and vice versa
- Data Encryption Standard (DES) is most commonly used symmetric block-encryption algorithm (created by US Govt)
- Triple-DES considered more secure
- Advanced Encryption Standard (AES), twofish up and coming

Symmetric Encryption: Caesar Cipher

MERRY CHRISTMAS

PHUUB FKULVWPDV

Symmetric Encryption: Jefferson's Wheel Cipher

 $Monticello\ Web\ Site:\ www.monticello.org/reports/interests/wheel_cipher.html$

- Sender:
 - assemble wheels in some (secret) order.
 - Align message on one line.
 - Choose any of the other lines as ciphertext.
- Receive
 - Assemble wheels in same secret order.
 - Align cipertext on one line.
 - Look for meaningful message on other lines.

Asymmetric Encryption (cont.)

- Public-key encryption based on each user having two keys:
 - public key published key used to encrypt data
 - private key key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
 - Most common is RSA block cipher
 - Efficient algorithm for testing whether or not a number is prime
 - No efficient algorithm is know for finding the prime factors of a number

Asymmetric Encryption (Cont.)

- Formally, it is computationally infeasible to derive $D(k_d, N)$ from $E(k_e, N)$, and so $E(k_e, N)$ need not be kept secret and can be widely disseminated
 - $E(k_e, N)$ is the public key
 - $D(k_d, N)$ is the private key
 - N is the product of two large, randomly chosen prime numbers p and q (for example, p and q are 512 bits each)
 - Encryption algorithm is $E(k_e, N)(m) = m^{k_e} \mod N$, where k_e satisfies $k_e k_d \mod (p-1)(q-1) = 1$
 - The decryption algorithm is then $D(k_d, N)(c) = c^{k_d} \mod N$

An Example

- For example. make p = 7 and q = 13
- We then calculate N = 7*13 = 91 and (p-1)(q-1) = 72
- We next select k_e relatively prime to 72 and < 72, yielding 5
- Finally, we calculate k_d such that $k_e k_d$ mod 72 = 1, yielding 29
- We how have our keys
 - Public key, $(k_e, N) = (5, 91)$
 - Private key, $(k_{d'}, N) = (29, 91)$
- Encrypting the message 69 with the public key results in the ciphertext
 - $-69^5 \mod 91 = 62$
- Ciphertext can be decoded with the private key
 - $-62^{29} \mod 91 = 69$
- Public key can be distributed in clear text to anyone who wants to communicate with holder of public key

Symmetric vs. Asymmetric

- Symmetric cryptography based on transformations
- Asymmetric based on mathematical functions
 - Asymmetric much more compute intensive
 - Typically not used for bulk data encryption
 - Used, instead, for short plaintexts, for example symmetric keys.

Authentication

- Constraining set of potential senders of a message
 - Also can prove message unmodified
- Algorithm components
 - A set K of keys
 - A set M of messages
 - A set A of authenticators
 - A function $S: K \to (M \to A)$
 - That is, for each $k \in K$, S(k) is a function for generating authenticators from messages
 - Both S and S(k) for any k should be efficiently computable functions
 - A function V: K → (M× A→ {true, false}). That is, for each k
 ∈ K, V(k) is a function for verifying authenticators on
 messages
 - Both V and V(k) for any k should be efficiently computable functions

Authentication (Cont.)

- For a message m, a computer can generate an authenticator $a \in A$ such that V(k)(m, a) = true only if it possesses S(k)
- Thus, computer holding S(k) can generate authenticators on messages so that any other computer possessing V(k) can verify them
- Computer not holding S(k) cannot generate authenticators on messages that can be verified using V(k)
- Since authenticators are generally exposed (for example, they are sent on the network with the messages themselves), it must not be feasible to derive S(k) from the authenticators

Authentication - Digital Signature

- Based on asymmetric keys and digital signature algorithm
- Authenticators produced are digital signatures
- In a digital-signature algorithm, computationally infeasible to derive $S(k_s)$ from $V(k_v)$
 - V is a one-way function
 - Thus, k_v is the public key and k_s is the private key
- Consider the RSA digital-signature algorithm
 - Similar to the RSA encryption algorithm, but the key use is reversed
 - Digital signature of message $S(k_s)(m) = H(m)^{k_s} \mod N$
 - The key k_s again is a pair (d, N), where N is the product of two large, randomly chosen prime numbers p and q
 - Verification algorithm is $V(k_v)(m, a) \equiv (a^{k_v} \mod N = H(m))$
 - Where k_v satisfies $k_v k_s \mod (p-1)(q-1) = 1$

SSL

- Applications: HTTP, IMAP, FTP, etc...
- Client and server negotiate symmetric key that they will use for the length of the data session.
- Two phases in SSL:
 - Connection Establishment
 - Data Transfer

SSL: Connection Establishment

- Step 1: Client sends request to server, containing
 - SSL version; connection preferences; nonce (i.e. some random number)
- Step 2: Server chooses among preferences, and sends reply, containing
 - Chosen preferences; nonce; public-key certificate
 - Public-key certificate is a public key that has been digitally signed by a trusted authority.
- Step 3: Client can use certification authority's public key to check authenticity of server's public key.
- Step 4: Server can request public key of client and verify it similarly (optional)
- Step 5: Client chooses random number (premaster secret), encrypts it with server's public key, and sends it to server.
- Step 6: Both parties compute session key (used during data transfer) based on premaster secret and the two nonces.
 - Note: At no point is the session key transferred between client and server.

SSL: Data Transfer

- Messages are fragmented into 16kB portions.
- Each portion is optionally compressed.
- A Message Authentication Code (MAC) is appended
 - MAC is a hash derived from plaintext, two nonces, and premaster secret
- Plaintext and MAC are encrypted using the symmetric key constructed during connection establishment.