CPSC 410/611:

Operating Systems

CPSC410/611: Security

e Security
- Security Attacks
- Security Threats
- Crypto
- Authentication

e Examples
- SSL

Security Threats

e Breach of confidentiality
- unauthorized access to and/or dissemination of information
- result of theft or illegal action of who has access to information
e Breach of integrity
- unauthorized modification of data
e Information destruction:
- loss of internal data structures
- loss of stored information
- information may be destroyed without being disclosed
e Unauthorized use of service:
- bypass system accounting policies
- unauthorized use of some proprietary services
- obtain “free computing time”
e Denial of service:

- prevent an authorized user from utilizing the system’s services in a
timely manner

CPSC 410/611:

Operating Systems

Typical Attacks

Typical Attacks: Breach of Confidentiality

® packet data S

Q~
® packet sizes
® packet timing

CPSC 410/611:

Operating Systems

Countermeasure: Encryption

encrypted channel

e packet data S
® packet sizes
e packet timing

Countermeasure: Encryption Sufficient?

Example: KeysTr‘oke AnGIySiS. [D. Wagner et al. “Timing Analysis of Keystrokes and Timing Attacks on SSH”, Usenix'01]

encrypted channel

e packet data S
® packet sizes |
e packet timing « v

® packet data
® packet sizes
¢ packet timing

CPSC 410/ 611 : Operating Systems

Character-Pair Delays
15 15 D. Wagner
V=0 v—=b
10 10
5 5
o0 100 200 300 00 1(‘]0 200 300
Measured delay between characters.

Character-Pair Delay Distributions

D. Wagner

0.035

0.025

o
=
5]

Probability

0.015

0.01

0,005,

Latency (millisecond)

Estimated Gaussian delay distributions of character pairs collected
from a user.

CPSC 410/611:

Operating Systems

Information Content of Keystroke Data

3.5

Information Gain (bits)

0.5
0

Information Gain

I i
50 100

D. Wagner

L L I
150 200 250 300

Latency (milliseconds)

Typical Attacks: Man-In-The-Middle

CPSC 410/611:

Operating Systems

Typical Attacks: Masquerading

Man-In-The-Middle: Example

e Passive tapping
- Listen to communication without altering contents.
® Active wire tapping
- Modify data being transmitted

- Example:
system intruder] user
o O « (@]
°c—F——F—so0—F——— | 5
logoff!

Intruder X < 4 o
takes over — .
identity of user fine!
masqueradin

O« (d g) (@)

0= » O

CPSC 410/ 611 : Operating Systems

Typical Attacks: Penetration Attempts

e Two basic forms:
- completely bypass authentication mechanism

- obtain information or alter the system so as to enter system as
authorized user

* Attempts:
- Wire tapping (active vs. passive)
Trial and error

Browsing
® Search storage (in particular previously allocated, but now
available) for unauthorized information.

Trap doors
e Unspecified and undocumented features of the system that
may be exploited to perform unauthorized actions.

Trojan horse
Searching of waste

Prototypical Security Attacks (Tanenbaum)

Request memory or disk space and simply read it.

Try illegal system calls, and/or with illegal parameters

Start logging in and try to abort login sequence.
Modify OS structures kept in user space.

Look for “Do not do X”. Try as many variations of X as
you can think of.

Trojan horses

Trapdoors

Bribe personnel

CPSC 410/ 611 : Operating Systems

Famous (fixed) Security Flaws (Tanenbaum)

e Unix: 1pr has option to delete file after is printed. So,
print and remove password file.

e Unix: Link file called core to password file. Force core
dump in program running with root privileges.

e Unix: The mkdir command runs with root privileges,
creating i-node with system call mknod, then changes
owner of directory with chown system call.

e TENEX: The “aligned password” trick.

e 0S/360: To open file, OS verified password first. Then
went to fetch filename. In the meantime, the filename
could be overwritten by a DMA operation.

Buffer Overrun Attacks (Silberschatz et al)

#include <stdio.h> [Example and illustrations from Silberschatz et al. “Operating Systems Concepts” Ch. 15]

#define BUFFER SIZE 256

int main(int argc, char *argv[]) bottom -« frame pointe
{ return address
char buffer [BUFFER SIZE];
if (argc < 2) saved frame pointer
grows

return -1;

else {

strcpy (buffer,argv([1l]); automatic variables

return 0;
} parameter(s)
top
}
return address address of modified
shell code
saved frame pointer X
NO ‘0P
buffer(BUFFER_SIZE - 1) , 3 #include <stdio.h>
copied ¢ . . .
-— int main(int argc, char *argv[])
{
buffer(1) modified shell code execvp (*‘\bin\sh’’, **\bin \sh’’, NULL);
return 0;
buffer(0) }

(a) (b)

CPSC 410/611:

Operating Systems

The Morris Worm (Nov 2nd, 1988)

[Example and illustrations from Silberschatz et al. “Operating Systems Concepts” Ch. 15]

e Worm: A process that replicates itself and uses up system resources (tape
worm) (The Shockwave Rider, J. Brunner 1975)

e Virus: Piece of code that adds itself to other programs. Cannot execute
independently (When Charlie Was One, D. Gerrold 1972)

e Morris Worm: first grand-scale attack on Internet.

rsh attack
grappling h
hook < fingerd attack
(bootstrap) . sendmail attack
worm < worm
target system infected system

Safeguards

e External safeguards:
- control physical access to computing facility
- badges, locks, sign-in procedures, ...
- administrative mechanisms:
® audit trails
e threat monitoring
e Internal safeguards:
Verification of user identity (Authentication)
- Access control (e.g. at file-system level)
- Information flow control:

e It is not always necessary to access an object to get
information. Sometimes information can be transferred or
inferred.

Encryption

CPSC 410/611:

Operating Systems

CPSC410/611: Security

e Security

- Crypto

- Authentication
e Examples

- SSL

Secure Communication over Insecure Medium

b‘& | encryption encryption
key k algorithm
E
>

xewred

1
1 o
Qo
key 23 Il 5
5c m=
exchange 25 = @ «— attacker
Q =3
£%5 3% -
; 2

——————— »
decryption decryption
key k algorithm
D

z
2

read message m

=uw

a
wajueld

10

CPSC 410/ 611 : Operating Systems

Encryption

Encryption algorithm consists of

An

Set of K keys

Set of M Messages

Set of C cyphertexts (encrypted messages)

A function E: K = (M=). That is, for each k € K, E(K) i

generating ciphertexts from messages.
e Both E and E(k) for any k should be efficiently computable functions.

A function D: K = (€ = M). That is, for each k € K, D(k) is a function for
generating messages from ciphertexts.

e Both D and D(k) for any k should be efficiently computable functions.

encryption algorithm must provide this essential property:

Given a ciphertext ¢ € C, a computer can compute m
such that E(k)(m) = ¢
only if it possesses D(k).

Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts used
to produce them, but a computer not holding D(k) cannot decrypt ciphertexts.
Since ciphertexts are generally exposed (for example, sent on the network),
it is important that it be infeasible to derive D(k) from the ciphertexts

Symmetric Encryption

Same Key used to encrypt and decrypt

E(K) can be derived from D(k), and vice versa

Data Encryption Standard (DES) is most commonly used symmetric
block-encryption algorithm (created by US Govt)

Triple-DES considered more secure
Advanced Encryption Standard (AES), twofish up and coming

11

CPSC 410/611:

Operating Systems

Symmeftric Encryption: Caesar Cipher

MERRY CHRISTMAS

PHUUB FKULVWPDV

Symmetric Encryption: Jefferson’'s Wheel Cipher

e Sender:

- assemble wheels in some
(secret) order.

- Align message on one
line.

- Choose any of the other
lines as ciphertext.

® Receive:
- Assemble wheels in same
secret order.
- Align cipertext on one
line.

Monticello Web Site: www.monticello.org/reports/interests/wheel_cipher.html - Look for meaningful
message on other lines.

12

CPSC 410/611:

Operating Systems

Asymmetric Encryption

write message m

xewred

encryption encryption

key k algorithm
E

be different & %

N
(0]
<
)
3
c
@
“u
\
\
\
o

3=

«— attacker

" channel ~
(w) (4
xauaydio

decryption
algorithm
D

m -

(w)(a =w
ajueld

Asymmetric Encryption (cont.)

® Public-key encryption based on each user having two keys:
- public key - published key used to encrypt data

- private key - Key known only to individual user used to decrypt
data

e Must be an encryption scheme that can be made public without
making it easy to figure out the decryption scheme

- Most common is RSA block cipher

- Efficient algorithm for testing whether or not a number is
prime

- No efficient algorithm is know for finding the prime factors of
a number

13

CPSC 410/ 611 : Operating Systems

Asymmetric Encryption (Cont.)

e Formally, it is computationally infeasible to derive D(k, , N) from
Ek,, N), and so E(k,, N) need not be kept secret and can be widely
disseminated

- Ek,, N) is the public key

- D(k,;, N) is the private key

- Nis the product of two large, randomly chosen prime numbers p
and g (for example, p and g are 512 bits each)

Encryption algorithm is E(k, , N)(m) = m*e mod N, where k,
satisfies k kymod (p—1)(g -1) =1

The decryption algorithm is then D(k,, M)(¢c) = ¢“ mod N

An Example

® For example. make p =7 and g = 13
e We then calculate N = 713 = 91 and (p—1)(g—-1) = 72
® We next select k, relatively prime to 72 and< 72, yielding 5
® Finally, we calculate k; such that k .k, mod 72 =1, yielding 29
e We how have our keys

- Public key, (k. N)= (5, 91)

- Private key, (k, N)=(29, 91)

® Encrypting the message 69 with the public key results in the ciphertext
62

- 695 mod 91 = 62
e Ciphertext can be decoded with the private key
- 6229 mod 91 = 69

e Public key can be distributed in clear text to anyone who wants to
communicate with holder of public key

14

CPSC 410/ 611 : Operating Systems

Encryption and Decryption using Asymmetric Cryptography

write —>| message 69

9
2.
=
@
=

encryption
k 1

5
ey ks e 69° mod 91

------- >

decryption

key Kgg 01
@—' -

_. insecure __
channel
4

622° mod 91

Symmetric vs. Asymmetric

e Symmetric cryptography based on transformations
e Asymmetric based on mathematical functions

- Asymmetric much more compute intensive

- Typically not used for bulk data encryption

- Used, instead, for short plaintexts, for example
symmetric keys.

15

CPSC 410/ 611 : Operating Systems

Authentication

e Constraining set of potential senders of a message

Also can prove message unmodified

e Algorithm components

A set K of keys

A set M of messages

A set A of authenticators

A function S: K =& (M— A)

® That is, for each k € K, S(k) is a function for generating
authenticators from messages

e Both S and S(k) for any k should be efficiently computable
functions

A function V: K = (Mx A— ftrue, falsej). That is, for each k

€ K, (k) is a function for verifying authenticators on

messages

e Both V and Uk) for any k should be efficiently computable
functions

Authentication (Cont.)

e For a message m, a computer can generate an authenticator a € A
such that V(K)(m, a) = true only if it possesses S(k)

e Thus, computer holding S(k) can generate authenticators on
messages so that any other computer possessing W(k) can verify
them

e Computer not holding S(k) cannot generate authenticators on
messages that can be verified using V(k)

e Since authenticators are generally exposed (for example, they are
sent on the network with the messages themselves), it must not be
feasible to derive S(k) from the authenticators

16

CPSC 410/611:

Operating Systems

Authentication - Digital Signature

e Based on asymmetric keys and digital signature algorithm
e Authenticators produced are digital signatures

e In a digital-signature algorithm, computationally infeasible to
derive S(k,) from V(k,)

- Vis a one-way function
- Thus, k, is the public key and k; is the private key
e Consider the RSA digital-signature algorithm

Similar to the RSA encryption algorithm, but the key use is
reversed

Digital signature of message S(k,)(m) = H(m)*s mod N

The key k, again is a pair (d, N), where N is the product of two
large, randomly chosen prime numbers p and ¢

Verification algorithm is V(k)(m, a) = (a*v mod N = H(m))
® Where k, satisfies k k. mod (p —1)(g —1) =1

SSL

e Applications: HTTP, IMAP, FTP, etc...

e Client and server negotiate symmetric key that they will use for
the length of the data session.

e Two phases in SSL:
- Connection Establishment
- Data Transfer

17

CPSC 410/ 611 : Operating Systems

SSL: Connection Establishment

Step 1: Client sends request to server, containing
- SSL version; connection preferences; nonce (i.e. some random number)
Step 2: Server chooses among preferences, and sends reply, containing
- Chosen preferences; nonce; public-key certificate
- Public-key certificate is a public key that has been digitally signed by
a frusted authority.
Step 3: Client can use certification authority’s public key to check
authenticity of server’s public key.
Step 4: Server can request public key of client and verify it similarly
(optional)
Step 5: Client chooses random number (premaster secret), encrypts it with
server’s public key, and sends it to server.
Step 6: Both parties compute session key (used during data transfer)
based on premaster secret and the two nonces.
- Note: At no point is the session key transferred between client and
server.

SSL: Data Transfer

Messages are fragmented into 16kB portions.
Each portion is optionally compressed.
A Message Authentication Code (MAC) is appended
- MAC is a hash derived from plaintext, two nonces, and pre-
master secret
Plaintext and MAC are encrypted using the symmetric key
constructed during connection establishment.

18

