
CPSC 410 / 611 : Operating Systems

1

CPSC410/611: Security

• Security
– Security Attacks
– Security Threats
– Crypto
– Authentication

• Examples
– SSL

Security Threats

• Breach of confidentiality
– unauthorized access to and/or dissemination of information
– result of theft or illegal action of who has access to information

• Breach of integrity
– unauthorized modification of data

• Information destruction:
– loss of internal data structures
– loss of stored information
– information may be destroyed without being disclosed

• Unauthorized use of service:
– bypass system accounting policies
– unauthorized use of some proprietary services
– obtain “free computing time”

• Denial of service:
– prevent an authorized user from utilizing the system’s services in a

timely manner

CPSC 410 / 611 : Operating Systems

2

Typical Attacks

Typical Attacks: Breach of Confidentiality

• packet data
• packet sizes
• packet timing

CPSC 410 / 611 : Operating Systems

3

encrypted channel

Countermeasure: Encryption

• packet data
• packet sizes
• packet timing

encrypted channel

Countermeasure: Encryption Sufficient?

• packet data
• packet sizes
• packet timing

• packet data
• packet sizes
• packet timing

Example: Keystroke Analysis. [D. Wagner et al. “Timing Analysis of Keystrokes and Timing Attacks on SSH”, Usenix’01]

CPSC 410 / 611 : Operating Systems

4

Character-Pair Delays

v ! o v ! b

Measured delay between characters.

D. Wagner

Character-Pair Delay Distributions

D. Wagner

Estimated Gaussian delay distributions of character pairs collected
from a user.

CPSC 410 / 611 : Operating Systems

5

Information Content of Keystroke Data

Information Gain

D. Wagner

Typical Attacks: Man-In-The-Middle

CPSC 410 / 611 : Operating Systems

6

Typical Attacks: Masquerading

Man-In-The-Middle: Example

• Passive tapping
– Listen to communication without altering contents.

• Active wire tapping
– Modify data being transmitted
– Example:

system intruder user

logoff!

fine!

Intruder
takes over
identity of user
(masquerading)

X

CPSC 410 / 611 : Operating Systems

7

Typical Attacks: Penetration Attempts

• Two basic forms:
– completely bypass authentication mechanism
– obtain information or alter the system so as to enter system as

authorized user
• Attempts:

– Wire tapping (active vs. passive)
– Trial and error
– Browsing

• Search storage (in particular previously allocated, but now
available) for unauthorized information.

– Trap doors
• Unspecified and undocumented features of the system that

may be exploited to perform unauthorized actions.
– Trojan horse
– Searching of waste

Prototypical Security Attacks (Tanenbaum)

• Request memory or disk space and simply read it.
• Try illegal system calls, and/or with illegal parameters
• Start logging in and try to abort login sequence.
• Modify OS structures kept in user space.
• Look for “Do not do X”. Try as many variations of X as

you can think of.
• Trojan horses
• Trapdoors
• Bribe personnel

CPSC 410 / 611 : Operating Systems

8

Famous (fixed) Security Flaws (Tanenbaum)

• Unix: lpr has option to delete file after is printed. So,
print and remove password file.

• Unix: Link file called core to password file. Force core
dump in program running with root privileges.

• Unix: The mkdir command runs with root privileges,
creating i-node with system call mknod, then changes
owner of directory with chown system call.

• TENEX: The “aligned password” trick.

• OS/360: To open file, OS verified password first. Then
went to fetch filename. In the meantime, the filename
could be overwritten by a DMA operation.

Buffer Overrun Attacks (Silberschatz et al)

#include <stdio.h>

#define BUFFER SIZE 256

int main(int argc, char *argv[])

{

char buffer[BUFFER SIZE];

if (argc < 2)

return -1;

else {

strcpy(buffer,argv[1]);

return 0;

}

}

#include <stdio.h>

int main(int argc, char *argv[])

{

execvp(‘‘\bin\sh’’,‘‘\bin \sh’’, NULL);

return 0;

}

[Example and illustrations from Silberschatz et al. “Operating Systems Concepts” Ch. 15]

CPSC 410 / 611 : Operating Systems

9

The Morris Worm (Nov 2nd, 1988)

• Worm: A process that replicates itself and uses up system resources (tape
worm) (The Shockwave Rider, J. Brunner 1975)

• Virus: Piece of code that adds itself to other programs. Cannot execute
independently (When Charlie Was One, D. Gerrold 1972)

• Morris Worm: first grand-scale attack on Internet.

grappling

hook

(bootstrap)

worm worm

rsh attack

fingerd attack

sendmail attack

infected systemtarget system

[Example and illustrations from Silberschatz et al. “Operating Systems Concepts” Ch. 15]

Safeguards

• External safeguards:
– control physical access to computing facility
– badges, locks, sign-in procedures, ...
– administrative mechanisms:

• audit trails
• threat monitoring

• Internal safeguards:
– Verification of user identity (Authentication)
– Access control (e.g. at file-system level)
– Information flow control:

• It is not always necessary to access an object to get
information. Sometimes information can be transferred or
inferred.

– Encryption

CPSC 410 / 611 : Operating Systems

10

CPSC410/611: Security

• Security
– Security Attacks
– Security Threats
– Crypto
– Authentication

• Examples
– SSL

Secure Communication over Insecure Medium

CPSC 410 / 611 : Operating Systems

11

Encryption
• Encryption algorithm consists of

– Set of K keys
– Set of M Messages
– Set of C cyphertexts (encrypted messages)
– A function E : K ! (M!C). That is, for each k ! K, E(k) is a function for

generating ciphertexts from messages.
• Both E and E(k) for any k should be efficiently computable functions.

– A function D : K ! (C ! M). That is, for each k ! K, D(k) is a function for
generating messages from ciphertexts.
• Both D and D(k) for any k should be efficiently computable functions.

• An encryption algorithm must provide this essential property:

Given a ciphertext c ! C, a computer can compute m
such that E(k)(m) = c

only if it possesses D(k).

– Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts used
to produce them, but a computer not holding D(k) cannot decrypt ciphertexts.

– Since ciphertexts are generally exposed (for example, sent on the network),
it is important that it be infeasible to derive D(k) from the ciphertexts

Symmetric Encryption

• Same key used to encrypt and decrypt
– E(k) can be derived from D(k), and vice versa

• Data Encryption Standard (DES) is most commonly used symmetric
block-encryption algorithm (created by US Govt)

• Triple-DES considered more secure
• Advanced Encryption Standard (AES), twofish up and coming

CPSC 410 / 611 : Operating Systems

12

Symmetric Encryption: Caesar Cipher

MERRY CHRISTMAS

PHUUB FKULVWPDV

Symmetric Encryption: Jefferson’s Wheel Cipher

• Sender:
– assemble wheels in some

(secret) order.
– Align message on one

line.

– Choose any of the other
lines as ciphertext.

• Receive:
– Assemble wheels in same

secret order.
– Align cipertext on one

line.

– Look for meaningful
message on other lines.

Monticello Web Site: www.monticello.org/reports/interests/wheel_cipher.html

CPSC 410 / 611 : Operating Systems

13

Asymmetric Encryption

Keys mustKeys must

be differentbe different

Asymmetric Encryption (cont.)

• Public-key encryption based on each user having two keys:
– public key – published key used to encrypt data
– private key – key known only to individual user used to decrypt

data
• Must be an encryption scheme that can be made public without

making it easy to figure out the decryption scheme
– Most common is RSA block cipher
– Efficient algorithm for testing whether or not a number is

prime
– No efficient algorithm is know for finding the prime factors of

a number

CPSC 410 / 611 : Operating Systems

14

Asymmetric Encryption (Cont.)

• Formally, it is computationally infeasible to derive D(kd , N) from
E(ke , N), and so E(ke , N) need not be kept secret and can be widely
disseminated
– E(ke , N) is the public key
– D(kd , N) is the private key
– N is the product of two large, randomly chosen prime numbers p

and q (for example, p and q are 512 bits each)
– Encryption algorithm is E(ke , N)(m) = mke mod N, where ke

satisfies kekd mod (p"1)(q "1) = 1
– The decryption algorithm is then D(kd , N)(c) = ckd mod N

An Example

• For example. make p = 7 and q = 13
• We then calculate N = 7!13 = 91 and (p"1)(q"1) = 72
• We next select ke relatively prime to 72 and< 72, yielding 5
• Finally, we calculate kd such that kekd mod 72 = 1, yielding 29
• We how have our keys

– Public key, (ke, N) = (5, 91)
– Private key, (kd, N) = (29, 91)

• Encrypting the message 69 with the public key results in the ciphertext
62
– 695 mod 91 = 62

• Ciphertext can be decoded with the private key
– 6229 mod 91 = 69

• Public key can be distributed in clear text to anyone who wants to
communicate with holder of public key

CPSC 410 / 611 : Operating Systems

15

Encryption and Decryption using Asymmetric Cryptography

Symmetric vs. Asymmetric

• Symmetric cryptography based on transformations
• Asymmetric based on mathematical functions

– Asymmetric much more compute intensive
– Typically not used for bulk data encryption
– Used, instead, for short plaintexts, for example

symmetric keys.

CPSC 410 / 611 : Operating Systems

16

Authentication
• Constraining set of potential senders of a message

– Also can prove message unmodified
• Algorithm components

– A set K of keys
– A set M of messages
– A set A of authenticators
– A function S : K ! (M! A)

• That is, for each k ! K, S(k) is a function for generating
authenticators from messages

• Both S and S(k) for any k should be efficiently computable
functions

– A function V : K ! (M# A! {true, false}). That is, for each k
! K, V(k) is a function for verifying authenticators on
messages
• Both V and V(k) for any k should be efficiently computable

functions

Authentication (Cont.)

• For a message m, a computer can generate an authenticator a ! A
such that V(k)(m, a) = true only if it possesses S(k)

• Thus, computer holding S(k) can generate authenticators on
messages so that any other computer possessing V(k) can verify
them

• Computer not holding S(k) cannot generate authenticators on
messages that can be verified using V(k)

• Since authenticators are generally exposed (for example, they are
sent on the network with the messages themselves), it must not be
feasible to derive S(k) from the authenticators

CPSC 410 / 611 : Operating Systems

17

Authentication – Digital Signature

• Based on asymmetric keys and digital signature algorithm
• Authenticators produced are digital signatures
• In a digital-signature algorithm, computationally infeasible to

derive S(ks) from V(kv)
– V is a one-way function
– Thus, kv is the public key and ks is the private key

• Consider the RSA digital-signature algorithm
– Similar to the RSA encryption algorithm, but the key use is

reversed
– Digital signature of message S(ks)(m) = H(m)ks mod N
– The key ks again is a pair (d, N), where N is the product of two

large, randomly chosen prime numbers p and q
– Verification algorithm is V(kv)(m, a) ≡ (akv mod N = H(m))

• Where kv satisfies kvks mod (p " 1)(q " 1) = 1

SSL

• Applications: HTTP, IMAP, FTP, etc…

• Client and server negotiate symmetric key that they will use for
the length of the data session.

• Two phases in SSL:
– Connection Establishment
– Data Transfer

CPSC 410 / 611 : Operating Systems

18

SSL: Connection Establishment

• Step 1: Client sends request to server, containing
– SSL version; connection preferences; nonce (i.e. some random number)

• Step 2: Server chooses among preferences, and sends reply, containing
– Chosen preferences; nonce; public-key certificate
– Public-key certificate is a public key that has been digitally signed by

a trusted authority.
• Step 3: Client can use certification authority’s public key to check

authenticity of server’s public key.
• Step 4: Server can request public key of client and verify it similarly

(optional)
• Step 5: Client chooses random number (premaster secret), encrypts it with

server’s public key, and sends it to server.
• Step 6: Both parties compute session key (used during data transfer)

based on premaster secret and the two nonces.
– Note: At no point is the session key transferred between client and

server.

SSL: Data Transfer

• Messages are fragmented into 16kB portions.

• Each portion is optionally compressed.

• A Message Authentication Code (MAC) is appended

– MAC is a hash derived from plaintext, two nonces, and pre-
master secret

• Plaintext and MAC are encrypted using the symmetric key
constructed during connection establishment.

