
CPSC 410 / 611 : Operating Systems

1

CPU Scheduling

• Schedulers in the OS

• Structure of a CPU Scheduler
– Scheduling = Selection + Dispatching

• Criteria for scheduling

• Scheduling Algorithms
– FIFO/FCFS

– SPF / SRTF

– Priority / MLFQ

• Thread Dispatching (hands-on!)

Schedulers

start

blocked

ready running
suspended

ready

suspended
blocked

long-term scheduler

medium-term scheduler

short-term scheduler

CPSC 410 / 611 : Operating Systems

2

Short-Term Scheduling

• Recall: Motivation for multiprogramming -- have
multiple processes in memory to keep CPU busy.

• Typical execution profile of a process/thread:

CPU burst

wait for I/O

CPU burst

wait for I/O

CPU burst

wait for I/O

CPU burst

start terminate

• CPU scheduler is managing the execution of CPU bursts,
represented by processes in ready or running state.

Scheduling Decisions

“Who is going to use the CPU next?!”

ready running

waiting
3 1

2
4

Scheduling decision points:

– 11. The running process changes from running to waiting
(current CPU burst of that process is over).

– 22. The running process terminates.

– 33. A waiting process becomes ready (new CPU burst of that
process begins).

– 44. The current process switches from running to ready .

no
n-

pr
e
e
m
pt
iv
e

pr
e
e
m
pt
iv
e

CPSC 410 / 611 : Operating Systems

3

Structure of a Scheduler

PCB scheduler dispatcher CPU

select process start new process

ready queue

??

What Is a Good Scheduler? Criteria

• User oriented:
– TTurnaround time : time interval from submission of

job until its completion
– WWaiting time : sum of periods spent waiting in ready

queue
– RResponse time : time interval from submission of job

to first response
– NNormalized turnaround time: ratio of turnaround time

to service time
• System oriented:

– CCPU utilization : percentage of time CPU is busy
– TThroughput : number of jobs completed per time unit

• Any good scheduler should:
– maximize CPU utilization and throughput
– minimize turnaround time, waiting time, response time

• Huh?
– maximum/minimum values vs. average values vs.

variance

CPSC 410 / 611 : Operating Systems

4

Scheduling Algorithms

• FFCFS : First-come-first-served

• SSPN: Shortest Process Next

• SSRT: Shortest Remaining Time

• priority scheduling

• RRR : Round-robin

• MMLFQ: Multilevel feedback queue scheduling

• Multiprocessor scheduling

First-Come-First-Served (FCFS/FIFO)

PCB
CPU

append at the end of queue

head

tail

• Advantages:

– very simple

• Disadvantages:

– long average and worst-case waiting times

– poor dynamic behavior (convoy effect)

CPSC 410 / 611 : Operating Systems

5

Waiting Times for FCFS/FIFO

P1 P2 P3
Wawg = (24+30)/3 = 18
Wwc = 30

P1P2 P3
Wawg = (6+12)/3 = 6
Wwc = 12

• Example: P1 = 24, P2 = 6, P3 = 6

• Average waiting times is not minimal.

• Waiting times may substantially vary over time.

• Worst-case waiting times can be very long.

Different arrival order:

Convoy Effects

empty!

CPU

I/O

CPU-bound

I/O-bound

empty!
CPU

I/O

CPSC 410 / 611 : Operating Systems

6

Shortest Process Next

• Whenever CPU is idle, picks process with shortest next CPU
burst.

• Advantages: minimizes average waiting times.

• Problem: How to determine length of next CPU burst?!

• Problem: Starvation of jobs with long CPU bursts.

CPU

short jobslong jobs

determine location in queue
(compare next CPU burst lengths)

Pshort

SJF Minimizes Average Waiting Time

Plong Pshort

dW = tshort - tlong < 0

• Provably optimal: Proof: swapping of jobs

Plong

• Example:

6 812 4 W = 6+18+26 = 50

6 8 12 4 W = 6+14+26 = 46

6 8 124 W = 6+14+18 = 38

6 8 124 W = 6+10+18 = 34

6 8 124 W = 4+10+18 = 32

CPSC 410 / 611 : Operating Systems

7

How to determine execution time of next CPU burst ?!

– wild guess?
– code inspection?

• Forecasting (i.e. estimation)

Sn+1 = F(Tn, Tn-1, Tn-2, Tn-3, Tn-4, ...)

• Simple forecasting function: exponential average:

Sn+1 = a Tn + (1-a) Sn

• Example: a = 0.8

Sn+1 = 0.8Tn + 0.16Tn-1 + 0.032Tn-2 + 0.0064Tn-3 + ...

SJF in Practice ?

Exponential Averaging: Example

4

6

8

10

12

14

16

a = 0.2

a = 0.5

a = 0.8

2

1

CPSC 410 / 611 : Operating Systems

8

Preemptive SPN: Shortest-Remaining-Time-First

• SPN:

P1 P3

P2 arrives here

• SRT:

P3

P1 and P3 arrive here

P2

P3

P3
nil

ready queue

P1 P3

P2 arrives here

P3 P1

P3

P3
nil

P1 and P3 arrive here

P1

P1 is preempted P1 resumes execution

P2

P2

(Fixed) Priority Scheduling

• Whenever CPU is idle, picks process with highest priority.

• Priority:

– process class, urgency, pocket depth.

• Unbounded blocking: Starvation

– Increase priority over time: aging

CPU

high prioritylow priority

Selector
(compare priorities)

CPSC 410 / 611 : Operating Systems

9

S
e
le

ct
or

(c
om

pa
re

 p
ri
or

it
ie

s)

• Conceptually

low priority

high priority

• Priority Queues

S
e
le

ct
or

(c
om

pa
re

 p
ri
or

it
ie

s)

q=f(p)

priority queue

priority

CPU CPU

low priority

high priority

Round-Robin

• FIFO with preemption after
time quantum

• Method for time sharing

• Choice of time quantum:

– large: FCFS

– small: Processor sharing

• Time quantum also defines
context-switching overhead

CPU

terminate

end of
time quantumFI

FO
 q

ue
ue

CPSC 410 / 611 : Operating Systems

10

S
el

ec
to

r
(c

om
pa

re
 p

ri
or

it
ie

s)

CPU

low priority

high priority

Multilevel Queue Scheduling

batch processes

user processes

kernel processes

high-priority user processes

separate queues, perhaps
with different scheduling
policies

S
el

ec
to

r
(c

om
pa

re
 p

ri
or

it
ie

s)

low priority

high priority

Multilevel Feedback Queue Scheduling

FCFS (quantum = infinity)

quantum = 16 ms

quantum = 2 ms

quantum = 4ms

aging

demotion

(conceptually)

CPSC 410 / 611 : Operating Systems

11

CPU Scheduling

• Schedulers in the OS

• Structure of a CPU Scheduler
– Scheduling = Selection + Dispatching

• Criteria for scheduling

• Scheduling Algorithms
– FIFO/FCFS

– SPF / SRTF

– Priority / MLFQ

• Thread Dispatching (hands-on!)

PCB scheduler dispatcher CPU

select process start new process

ready queue

??

Managing and Dispatching Threads (1)

typedef enum {THRD_INIT, THRD_READY, THRD_SUSPENDED, THRD_RUNNING,

 THRD_EXIT, THRD_STOPPED} THREAD_STATE;

typedef struct thread_context {

 reg_t s0, s1, s2, s3;

 reg_t s4, s5, s6, s7;

 reg_t gp;

 reg_t ra;

 reg_t fp;

 reg_t sp;

 reg_t pc;

} THREAD_CONTEXT;

class Thread : public PObject {

protected:

 char name[15];

 Addr stack_pointer;

 friend class Scheduler;

 THREAD_CONTEXT thread_context;

 THREAD_STATE thread_state;

 Scheduler * sched; /* pointer to global scheduler */

public:

 Thread(char _name[],

 int (*_thread_func_addr)(),

 int _stack_size,

 Scheduler * _s);

 ~Thread();

 /* -- THREAD EXECUTION CONTROL */

 virtual int start() {

/* Start thread and toss it on the ready queue. */

sched->resume();

 }

 virtual int kill() {

 /* Terminate the execution of the thread. */

sched->terminate();

 }

};

CPSC 410 / 611 : Operating Systems

12

Managing and Dispatching Threads (2)

class Scheduler {

private:

 int yield_to(Thread * new_thread); /* Calls low-level dispatching mechanisms. */

protected:

 Thread * current_thread;

 /* -- MMANAGEMENT OF THE READY QUEUE */

 virtual int remove_thread(Thread * _thr) {}; /* = NULL; */

 /* Remove the Thread from any scheduler queues. */

 virtual Thread * first_ready() {}; /* = NULL;*/

 /* Removes first thread from ready queue and returns it. This method is used in 'yield'. */

 virtual int enqueue(Thread * _thr) {}; /* = NULL; */

 /* Puts given thread in ready queue. This method is used in 'resume'. */

public:

 Scheduler(); /* Instantiate a new scheduler. This is done during OS startup. */

 /* -- SSTART THE EXECUTION OF THREADS. */

 virtual int start();

 /* Start the execution of threads by yielding to first thread in ready queue.

 Has to be called AFTER at least one thread has been started (typically the idle thread). */

 /* -- SSCHEDULING OPERATIONS */

 virtual int yield();

 /* Give up the CPU. If another process is ready, make that process have the CPU. Returns 0 if ok. */

 int terminate_thread(Thread * _thr);

 /* Terminate given thread. The thread must be eliminated from any ready queue and its execution must be
stopped. Special care must be taken if this is the currently executing thread. */

 int resume(Thread * _thr);

 /* Indicate that the process is ready to execute again. The process is put on the ready queue.*/

};

Managing and Dispatching Threads (2)

class Scheduler {

private:

 int yield_to(Thread * new_thread); /* Calls low-level dispatching mechanisms. */

protected:

 Thread * current_thread;

 /* -- MMANAGEMENT OF THE READY QUEUE */

 virtual int remove_thread(Thread * _thr) {}; /* = NULL; */

 /* Remove the Thread from any scheduler queues. */

 virtual Thread * first_ready() {}; /* = NULL;*/

 /* Removes first thread from ready queue and returns it. This method is used in 'yield'. */

 virtual int enqueue(Thread * _thr) {}; /* = NULL; */

 /* Puts given thread in ready queue. This method is used in 'resume'. */

public:

 Scheduler(); /* Instantiate a new scheduler. This is done during OS startup. */

 /* -- SSTART THE EXECUTION OF THREADS. */

 virtual int start();

 /* Start the execution of threads by yielding to first thread in ready queue.

 Has to be called AFTER at least one thread has been started (typically the idle thread). */

 /* -- SSCHEDULING OPERATIONS */

 virtual int yield();

 /* Give up the CPU. If another process is ready, make that process have the CPU. Returns 0 if ok. */

 int terminate_thread(Thread * _thr);

 /* Terminate given thread. The thread must be eliminated from any ready queue and its execution must be
stopped. Special care must be taken if this is the currently executing thread. */

 int resume(Thread * _thr);

 /* Indicate that the process is ready to execute again. The process is put on the ready queue.*/

};

int Scheduler::yield() {
 int return_code = 0;

 /* -- GET NEXT THREAD FROM READY QUEUE. */
 TThread * new_thread = first_ready();

 if (!new_thread) {
 /* --- THERE IS NO OTHER THREAD READY */
 /* (THIS MUST BE THE IDLE THREAD, THEN) */
 return return_code;
 }
 else {
 /* --- GIVE CONTROL TO new_thread */
 rreturn_code = yield_to(new_thread);

 /* THIS CODE IS EXECUTED AFTER A resume OPERATION. */
 return return_code;
 }
} /* of Scheduler::yield() */

CPSC 410 / 611 : Operating Systems

13

Managing and Dispatching Threads (2)

class Scheduler {

private:

 int yield_to(Thread * new_thread); /* Calls low-level dispatching mechanisms. */

protected:

 Thread * current_thread;

 /* -- MMANAGEMENT OF THE READY QUEUE */

 virtual int remove_thread(Thread * _thr) {}; /* = NULL; */

 /* Remove the Thread from any scheduler queues. */

 virtual Thread * first_ready() {}; /* = NULL;*/

 /* Removes first thread from ready queue and returns it. This method is used in 'yield'. */

 virtual int enqueue(Thread * _thr) {}; /* = NULL; */

 /* Puts given thread in ready queue. This method is used in 'resume'. */

public:

 Scheduler(); /* Instantiate a new scheduler. This is done during OS startup. */

 /* -- SSTART THE EXECUTION OF THREADS. */

 virtual int start();

 /* Start the execution of threads by yielding to first thread in ready queue.

 Has to be called AFTER at least one thread has been started (typically the idle thread). */

 /* -- SSCHEDULING OPERATIONS */

 virtual int yield();

 /* Give up the CPU. If another process is ready, make that process have the CPU. Returns 0 if ok. */

 int terminate_thread(Thread * _thr);

 /* Terminate given thread. The thread must be eliminated from any ready queue and its execution must be
stopped. Special care must be taken if this is the currently executing thread. */

 int resume(Thread * _thr);

 /* Indicate that the process is ready to execute again. The process is put on the ready queue.*/

};

int Scheduler::resume(Thread * _thr) {

 /* This thread better not be on the ready queue. */
 assert(_thr->thread_state != THRD_READY);

 eenqueue(_thr);

 return 0;

} /* Scheduler::resume() */

Managing and Dispatching Threads (2)

class Scheduler {

private:

 int yield_to(Thread * new_thread); /* Calls low-level dispatching mechanisms. */

protected:

 Thread * current_thread;

 /* -- MMANAGEMENT OF THE READY QUEUE */

 virtual int remove_thread(Thread * _thr) {}; /* = NULL; */

 /* Remove the Thread from any scheduler queues. */

 virtual Thread * first_ready() {}; /* = NULL;*/

 /* Removes first thread from ready queue and returns it. This method is used in 'yield'. */

 virtual int enqueue(Thread * _thr) {}; /* = NULL; */

 /* Puts given thread in ready queue. This method is used in 'resume'. */

public:

 Scheduler(); /* Instantiate a new scheduler. This is done during OS startup. */

 /* -- SSTART THE EXECUTION OF THREADS. */

 virtual int start();

 /* Start the execution of threads by yielding to first thread in ready queue.

 Has to be called AFTER at least one thread has been started (typically the idle thread). */

 /* -- SSCHEDULING OPERATIONS */

 virtual int yield();

 /* Give up the CPU. If another process is ready, make that process have the CPU. Returns 0 if ok. */

 int terminate_thread(Thread * _thr);

 /* Terminate given thread. The thread must be eliminated from any ready queue and its execution must be
stopped. Special care must be taken if this is the currently executing thread. */

 int resume(Thread * _thr);

 /* Indicate that the process is ready to execute again. The process is put on the ready queue.*/

};

int Scheduler::terminate_thread(Thread * thr) {

 /* Call the scheduler-specific function to remove
 the Thread object from any queue.*/

 if (current_thread != thr) {
 if ((current_thread->thread_state == THRD_READY)
 || (current_thread->thread_state == THRD_INIT)) {
 rremove_thread(thr);
 }
 }

 /* At this point the thread is not in any scheduler queue
 (anymore). The thread object is still around, though. */

 if (thr == current_thread) {
 /* The thread is committing suicide. We have to reschedule. */

 thr->thread_state = THRD_EXIT;

 /* This invokes the 'yield' method of the particular type of
 scheduler being used. The idea is that 'yield' will in turn
 call ‘yield_to’ to perform the dispatching. */
 yyield();

 /* WE SHOULD NOT BE REACHING THIS PART OF THE CODE! */
 assert(FALSE);
 }
}

CPSC 410 / 611 : Operating Systems

14

Managing and Dispatching Threads (2)

class Scheduler {

private:

 int yield_to(Thread * new_thread); /* Calls low-level dispatching mechanisms. */

protected:

 Thread * current_thread;

 /* -- MMANAGEMENT OF THE READY QUEUE */

 virtual int remove_thread(Thread * _thr) {}; /* = NULL; */

 /* Remove the Thread from any scheduler queues. */

 virtual Thread * first_ready() {}; /* = NULL;*/

 /* Removes first thread from ready queue and returns it. This method is used in 'yield'. */

 virtual int enqueue(Thread * _thr) {}; /* = NULL; */

 /* Puts given thread in ready queue. This method is used in 'resume'. */

public:

 Scheduler(); /* Instantiate a new scheduler. This is done during OS startup. */

 /* -- SSTART THE EXECUTION OF THREADS. */

 virtual int start();

 /* Start the execution of threads by yielding to first thread in ready queue.

 Has to be called AFTER at least one thread has been started (typically the idle thread). */

 /* -- SSCHEDULING OPERATIONS */

 virtual int yield();

 /* Give up the CPU. If another process is ready, make that process have the CPU. Returns 0 if ok. */

 int terminate_thread(Thread * _thr);

 /* Terminate given thread. The thread must be eliminated from any ready queue and its execution must be
stopped. Special care must be taken if this is the currently executing thread. */

 int resume(Thread * _thr);

 /* Indicate that the process is ready to execute again. The process is put on the ready queue.*/

};

int Scheduler::yield_to(Thread * new_thread) {

 int special_action = 0;
 int error_code = 0;

 Thread * old_thread = current_thread;

 if (old_thread->thread_state == THRD_EXIT)
special_action |= ACTION_EXIT;

 if (new_thread->thread_state == THRD_INIT)
special_action |= ACTION_INIT;

 current_thread = new_thread;
 /* If everything goes well. */

 old_thread->thread_state = THRD_STOPPED;
 /* Have to do this here; will not have another chance
 later. */

 thread_yield(&(old_thread->thread_context),
 &(new_thread->thread_context),
 special_action);

 /* The following will never be reached if the thread
 was exiting. */

 return error_code;
}

Reminder: Structure of a Scheduler
(conceptual structure)

• Incoming process is put into right location in ready queue.

• DDispatcher always picks first element in ready queue.

PCB
CPU

determine location in queue

head

tail

CPSC 410 / 611 : Operating Systems

15

Dispatching and Scheduling

class FIFOScheduler : public Scheduler {

protected:

 Queue ready_queue; /* The ready processes queue up here. */

 virtual int remove_thread(Thread * thr) {

 /* Remove the Thread from the ready_queue. */

int return_code = rready_queue.remove(thr);

assert(return_code == 0);

return return_code;

 }

 virtual Thread * first_ready() {

 /* Removes first thread from ready queue and returns it. This method is used in 'yield'. */

Thread * new_thread = ((Thread*)ready_queue.get();

 }

 virtual int enqueue(Thread * _thr) {

 /* Puts given thread in ready queue. This method is used in 'resume'. */

ready_queue.put(_thr);

 }

public:

 FIFOScheduler() : Scheduler(); ready_queue() {}

 /* Instantiate a new scheduler. This has to be done during OS startup. */

};

Low-Level Dispatching, MIPS-style
LEAF(thread_yield)

a0 : pointer to current thread’s context frame

a1 : pointer to new thread’s context frame

a2 .AND. ACTION_INIT != 0 -> new thread just initialized.

a2 .AND. ACTION_EXIT != 0 -> old thread exits. do not save state.

: other -> simple context switch.

li t1, ACTION_EXIT

and t3, t1, a2

bnez t3, start_switch # -- IF THREAD EXISTS, SKIP STATE SAVING

IF THREAD IS EXITING, POINTER TO PROCESSOR STATE TABLE IS LIKELY INVALID.

sw s0, S0_OFF(a0) # -- SAVE CURRENT STATE

…

sw s6, S6_OFF(a0)

sw s7, S7_OFF(a0)

sw gp, GP_OFF(a0)

sw ra, RA_OFF(a0)

sw fp, FP_OFF(a0)

sw sp, SP_OFF(a0)

start_switch:

lw s0, S0_OFF(a1) # -- LOAD REGISTERS FOR NEW TASK

…

lw s7, S7_OFF(a1)

lw gp, GP_OFF(a1)

lw ra, RA_OFF(a1)

lw fp, FP_OFF(a1)

lw sp, SP_OFF(a1)

(continue on next slide)

CPSC 410 / 611 : Operating Systems

16

Low-Level Dispatching, MIPS-style (2)

(from previous slide:

1. unless ACTION_EXIT, save state of old thread.

2. load state of new thread.

}

li t1, ACTION_INIT

and t3, t1, a2

beqz t3, simple_switch

this is a new thread starting, load init PC and start from there.

lw t2, PC_OFF(a1)

jalr ra, t2

at this point the thread function has completed. stop the thread.

XXXXX NEED TO FILL IN CODE !!!!

simple_switch:

the new thread is all ready to go, just start.

j ra

END(thread_yield)

Simple Preemptive Scheduling

class RRScheduler : public FIFOScheduler {

private:

 unsigned int time_quantum;

 Timer * quantum_timer;

 friend class EndOfQuantumEvent;

 void handle_end_of_quantum(EXCEPTION_CONTEXT * _xcp) {

quantum_timer->set(time_quantum, _xcp->compare);

if (task_ready()) {

resume(current_thread);

Scheduler::yield();

}

 }

public:

 RRScheduler(unsigned int _quantum) : FIFOScheduler()

time_quantum = _quantum;

EndofQuantumEvent * eoq_ev = new EndOfQuantumEvent(this);

quantum_timer = new Timer(eoq_ev);

 }

 virtual int start() {

quantum_timer->set(time_quantum);

FIFOScheduler::start();

 }

 virtual int yield() {

quantum_timer->clear();

quantum_timer->set(time_quantum);

Scheduler::yield();

 }

};

class EndOfQuantumEvent : public TimerEvent {
private:
 RRScheduler * sched;
public:
 EndOfQuantumEvent(RRScheduler * _sched) {
 sched = _sched;
 }
 void event_handler(EXCEPTION_CONTEXT * _xcp) {
 clear_exl();
 sched->handle_end_of_quantum(_xcp);
 }
};

