CPSC 410/ 611 : Operating Systems

CPU Scheduling

Schedulers in the OS

Structure of a CPU Scheduler
- Scheduling = Selection + Dispatching

Criteria for scheduling

Scheduling Algorithms
- FIFO/FCFS
- SPF / SRTF
- Priority / MLFQ

Thread Dispatching (hands-ont!)

Schedulers

long-term scheduler

short-term scheduler

suspended « -
ready > >

iy

suspended *
blocked . blocked

.I

medium-term scheduler

CPSC 410/611 :

Operating Systems

Short-Term Scheduling

e Recall: Motivation for multiprogramming -- have
multiple processes in memory to keep CPU busy.

e Typical execution profile of a process/thread:

start terminate

| |
[[weit for 1/0 | [| wait for 1/0 | [E] [wait for /0 | []

CPU burst CPU burst CPU burst CPU burst

N_ S N _ S N_ S N _ S
O O O O

T
o

N _ S
O

N _ S
O

® CPU scheduler is managing the execution of CPU bursts,
represented by processes in ready or running state.

Scheduling Decisions

non-preemptive

*Who is going to use the CPU next?!”

©)

@

Scheduling decision points:

- 1. The running process changes from running to waiting b
(current CPU burst of that process is over).

- 2. The running process terminates.

- 3. A waiting process becomes ready (new CPU burst of that
process begins).

preemptive

- 4. The current process switches from running to ready .

CPSC 410/ 611 : Operating Systems

Structure of a Scheduler

ready

queue

o

LB 00

CB

U

scheduler :(> dispatcher :{> CPU

select process start new process

-7

What Is a Good Scheduler? Criteria

User oriented:

- Turnaround time : time interval from submission of
job until its completion

- Wiaiting time : sum of periods spent waiting in ready
queue

- Response time : time interval from submission of job
to first response

- Normalized furnaround fime: ratio of turnaround time
to service time

System oriented:

- CPU utilization : percentage of time CPU is busy

- Throughput : number of jobs completed per time unit
Any good scheduler should:

- maximize CPU utilization and throughput

- minimize turnaround time, waiting time, response time
Huh?

- maximum/minimum values vs. average values vs.
variance

CPSC 410/611 :

Operating Systems

Scheduling Algorithms

o |f| Dﬁ

4 U

e FCFS : First-come-first-served

SPN: Shortest Process Next

e SRT: Shortest Remaining Time

e priority scheduling

RR : Round-robin

e MLFQ: Multilevel feedback queue scheduling

)
°

e Multiprocessor scheduling

First-Come-First-Served (FCFS/FIFO)

> append at the end of queue -

head
tail

CPU

Advantages:
- very simple

Disadvantages:
- long average and worst-case waiting times
- poor dynamic behavior (convoy effect)

CPSC 410/611 :

Operating Systems

Waiting Times for FCFS/FIFO

W,,, = (24+30)/3 = 18

W, = 30

e Example: P, =24, P,=6, P;=6
Pl P2 P3
Different arrival order:
P, Ps P;

W, = (6+12)/3= 6

awg

wc

Average waiting times is not minimal.
Waiting times may substantially vary over time.
Worst-case waiting times can be very long.

Convoy Effects

. CPU

CPU-bound
|:| 1/0-bound

empty!

/0

empty!

CPU

1o

CPSC 410/ 611 : Operating Systems

Shortest Process Next

determine location in queue
: 2 (compare next CPU burst lengths) | — |
SERREER!
e B o B e B
r —> | CPU
I_onq jobs short jobs

burst.

® Advantages: minimizes average waiting times.
Problem: How to determine length of next CPU burst?!
Problem: Starvation of jobs with long CPU bursts.

e Whenever CPU is idle, picks process with shortest next CPU

SJF Minimizes Average Waiting Time

e Provably optimal

: Proof: swapping of jobs

.F ______________________] Plonq I Pshor‘r i__-_-_-_-_-_-_-_-_-
____________ L+
_____________ I Pshor? I Plonq i__________
Example:

Le | 12 | 8 [4]
Le | 8 | 12 [4]
Le | 8 [4] 12 |

L e [4] 8 | 12 |
(4] ¢ | 8 | 12 |

dw = Tshorf - Tlong <0

W = 6+18+26 = 50
W = 6+14+26 = 46
W = 6+14+18 = 38
W = 6+10+18 = 34

W = 4+10+18 = 32

CPSC 410/ 611 : Operating Systems

SJF in Practice ?

How to determine execution time of next CPU burst 2!

- wild guess?
- code inspection?
e Forecasting (i.e. estimation)
s.n+1 = F(Tn/ Tn-]’ Tn-2/ 7—n-3/ Tn-4l)
e Simple forecasting function: exponential average:
S,y= aT,+(l-a) S,
e Example: a = 0.8

S, = 0.8T, + 0.16T, , + 0.032T, , + 0.0064T, ; + ...

Exponential Averaging: Example

16

14

12

10G ¥ %
a=0.8
8 e

I

CPSC 410/ 611 : Operating Systems

Preemptive SPN: Shortest-Remaining-Time-First

e SPN:
— P, and P; arrive here
r P, arrives here

4

P, P, P,
nil
LP.] Ez [P.] <«— ready queue
3

SRT:

— P, and P; arrive here
r P, arrives here

4

Py P, Py Ps

[P.] +[P [P,] nil

P, resumes execution

P, is preempted

(Fixed) Priority Scheduling

| S Selector
(compare priorities)

SEEEEEE

——> | CPU

rl b 1 1]

low priority high priority

e Whenever CPU is idle, picks process with highest priority.
e Priority:

- process class, urgency, pocket depth.
e Unbounded blocking: Starvation

- Increase priority over time: aging

CPSC 410/ 611 : Operating Systems

+ Conceptually * Priority Queues

priority queue
low priority, priority

low priority

<

9=f(p)

=>

Selector
(compare priorities)

Selector
(compare priorities)

high priority

high priority
b cPU b cPU

Round-Robin

FIFO with preemption after
time quantum

e Method for time sharing
e Choice of time quantum:
- large: FCFS
- small: Processor sharing

e Time quantum also defines
context-switching overhead

-

end of
time quantum

l—\‘:)cpu —

terminate

FIFO queue

CPSC 410/611 :

Operating Systems

Multilevel Queue Scheduling

low priority

::> batch processes « ” T
n

3 — _‘

5 T => user processes b &
=> |85
3§
Q

g — _‘

S => high-priority user process;s

::> kernel processes - ” .

4 high priority
separate queues, perhaps E :
with different scheduling - cPU
policies

Multilevel Feedback Queue Scheduling

(conceptually)

low priority
: P FCFS (quantum = infinity) N
~ \ «—
v I:">
5 E | quantum = 16 ms N \
% § <«1— aging
83 N —
(2]
fl =
Y / quantum = 4ms /
(N «—
/ quantum = 2 ms
demotion high priority

10

CPSC 410/ 611 : Operating Systems

CPU Scheduling

dispatcher | L3>

start new process

A

e Thread Dispatching (hands-on!)

Managing and Dispatching Threads (1)

typedef enum {THRD_INIT, THRD_READY, THRD_SUSPENDED, THRD_RUNNING,
THRD_EXIT, THRD_STOPPED} THREAD_STATE;
typedef struct thread_context {

reg_t s0, s1, s2, s3; class Thread : public PObject {

. protected:
et char name[151;
reg_t r'af Addr stack_pointer;
reg_t pr friend class Scheduler;
reg_t Spf THREAD_CONTEXT thread_context;
reg_t pcf THREAD_STATE thread_state;
3 THREAD CONTEXT' Scheduler * sched; /* pointer to global scheduler */
a ’ public:
Thread(char _name[],
int (*_thread_func_addr)Q,
int _stack_size,
Scheduler * _s);
~Thread(Q);

/* -- THREAD EXECUTION CONTROL */

virtual int start() {
/* Start thread and toss it on the ready queue. */
sched->resume();

virtual int killQ {
/* Terminate the execution of the thread. */
sched->terminate();
}
b

11

CPSC 410/ 611 : Operating Systems

Managing and Dispatching Threads (2)

class Scheduler {
private:
int yield_to(Thread * new_thread); /* Calls low-level dispatching mechanisms. */
protected:
Thread * current_thread;
/* -- MANAGEMENT OF THE READY QUEUE */
virtual int remove_thread(Thread * _thr) {}; /* = NULL; */
/* Remove the Thread from any scheduler queues. */
virtual Thread * first_ready() {}; /* = NULL;*/
/* Removes first thread from ready queue and returns it. This method is used in 'yield'. */
virtual int enqueue(Thread * _thr) {}; /* = NULL; */
/* Puts given thread in ready queue. This method is used in 'resume'. */
public:
Scheduler(); /* Instantiate a new scheduler. This is done during 0S startup. */
/* -- START THE EXECUTION OF THREADS. */
virtual int startQ);
/* Start the execution of threads by yielding to first thread in ready queue.
Has to be called AFTER at least one thread has been started (typically the idle thread). */
/* -- SCHEDULING OPERATIONS */
virtual int yieldQ);
/* Give up the CPU. If another process is ready, make that process have the CPU. Returns @ if ok. */
int terminate_thread(Thread * _thr);
/* Terminate given thread. The thread must be eliminated from any ready queue and its execution must be
stopped. Special care must be taken if this is the currently executing thread. */
int resume(Thread * _thr);
/* Indicate that the process is ready to execute again. The process is put on the ready queue.*/

I

Managing and Dispatching Threads (2)

class Scheduler {

private:
int yield_to(Thread * new_thread); /* Calls low
protected: int Scheduler::yield() {
Thread * current_thread; int return_code = 0;
/% ~= MANAGEMENT OF THE READY QUEUE */ /* -~ GET NEXT THREAD FROM READY QUEUE. */
virtual int remove_thread(Thread * _thr) {}; /* =| Thpead * new_thread = first_ready();
/* Remove the Thread from any scheduler queues. *
virtual Thread * first_ready() {}; /* = NULL;*/ if (!'new_thread) {
/* Removes first thread from ready queue and retu /* --- THERE IS NO OTHER THREAD READY */

/* (THIS MUST BE THE IDLE THREAD, THEN) */

1 1 * . * .
virtual int enqueue(Thread * _thr) {}; /* = NULL; return return_code;

/* Puts given thread in ready queue. This method i }

public: else {
Scheduler(); /* Instantiate a new scheduler. Thi /* --- GIVE CONTROL TO new_thread */
/* -~ START THE EXECUTION OF THREADS. */ return_code = yield_to(new_thread);

virtual int startQ);

/* Start the execution of threads by yielding to
Has to be called AFTER at least one thread has

/* -- SCHEDULING OPERATIONS */ } /* of Scheduler::yield() */

/* THIS CODE IS EXECUTED AFTER A resume OPERATION.
return return_code;

/* Give up the CPU. If another process is ready,

*/

int terminate_thread(Thread * _thr);

/* Terminate given thread. The thread must be eliminated from any ready queue and its execution must be
stopped. Special care must be taken if this is the currently executing thread. */

int resume(Thread * _thr);

/* Indicate that the process is ready to execute again. The process is put on the ready queue.*/

b

12

CPSC 410/ 611 : Operating Systems

Managing and Dispatching Threads (2)

class Scheduler {
private:

int yield_to(Thread * new_thread); /* Calls low-level dispatching mechanisms. */
protected:

Thread * current_thread;

/* -- MANAGEMENT OF THE READY QUEUE */

virtual int remove_thread(Thread * _thr) {}; /* = NULL; */

/* Remove the Thread from any scheduler queues. */

virtual Thread * first_ready() {}; /* = NULL;*/

/* Removes first thread from ready queue and returns it. This method is used in 'yield'. */
virtual int enqueue(Thread * _thr) {}; /* = NULL; */
/* Puts given thread in ready queue. This method i — —

public:

i .. *
Scheduler(); /* Instantiate a new scheduler. Thi int Scheduler::resume(Thread * _thr) {

/* -- START THE EXECUTION OF THREADS. */ /* This thread better not be on the ready queue. */

virtual int startQ); assert(_thr->thread_state != THRD_READY);

/* Start the execution of threads by yielding to
Has to be called AFTER at least one thread has enqueue(_thr);

/* -- SCHEDULING OPERATIONS */

virtual int yieldQ);

/* Give up the CPU. If another process is ready,| } /* Scheduler::resume() */

int terminate_thread(Thread * _thr);

/* Terminate given thread. The thread must be eli

return 0;

stopped. Special care must be taken if this is the currently executing thread. *
:?/* Indicate that the process is ready to execute again. The process is put on the ready queue.*/

5

Managing and Dispatching Threads (2)

class Scheduler {

private: int Scheduler::terminate_thread(Thread * thr) {
int yield_to(Thread * new_thread); /*

protected: /* Call the scheduler-specific function to remove
Thread * current_thread; the Thread object from any queue.*/

/* -- MANAGEMENT OF THE READY QUEUE */

if t_thread != th
virtual int remove_thread(Thread * _thr) if Ceurren rea 1

if (Ccurrent_thread->thread_state == THRD_READY)

/* Remove the Thread from any scheduler Il Ccurrent_thread->thread_state == THRD_INIT)) {
virtual Thread * first_ready(Q) {}; /* = remove_thread(thr);
/* Removes first thread from ready queue }

virtual int enqueue(Thread * _thr) {}; / ¥

/* Puts given thread in ready queue. Thi /x At this point the thread is not in any scheduler queue

public: (Canymore). The thread object is still around, though. */
Scheduler(); /* Instantiate a new schedu .
/* -~ START THE EXECUTION OF THREADS. */| if (thr == current_thread) {

> . v .. .
virtual int startQ); /* The thread is committing suicide. We have to reschedule. */
/* Start the execution of threads by yie thr->thread_state = THRD_EXIT;
Has to be called AFTER at least one t
/* -- SCHEDULING OPERATIONS */ /* This invokes the 'yield' method of the particular type of
virtual int yield(); scli\?dt‘llgrlzeing used. Lhe idia Lsf thath'_yiehi'/ will in turn
/* Give up the CPU. If another process L a9 Yie _to’ to perform the dispatching.
. : . * " yieldQ;
|:>/* Terminate given thread. The thread mu /* WE SHOULD NOT BE REACHING THIS PART OF THE CODE! */
stopped. Special care must be taken if assert(FALSE);

int resume(Thread * _thr);
/* Indicate that the process is ready to }
b

CPSC 410/ 611 : Operating Systems

Managing and Dispatching Threads (2)

class Scheduler {

rivate:
i ield tol * MV
protected:

Thread * current_thread;

/* -- MANAGEMENT OF THE READY QUEUE */

virtual int remove_thread(Thread * _thr)

/* Remove the Thread from any scheduler d

virtual Thread * first_ready() {}; /* =

/* Removes first thread from ready queue

virtual int enqueue(Thread * _thr) {}; /

/* Puts given thread in ready queue. Thig

public:

Scheduler(); /* Instantiate a new schedul

/* -- START THE EXECUTION OF THREADS. */

virtual int startQ);

/* Start the execution of threads by yiel
Has to be called AFTER at least one tl

/* -- SCHEDULING OPERATIONS */

virtual int yieldQ);

/* Give up the CPU. If another process

int terminate_thread(Thread * _thr);

/* Terminate given thread. The thread mug
stopped. Special care must be taken if

int resume(Thread * _thr);

/* Indicate that the process is ready to

I

int Scheduler::yield_to(Thread * new_thread) {

int special_action
int error_code

0;
0;

Thread * old_thread = current_thread;

if (old_thread->thread_state == THRD_EXIT)
special_action |= ACTION_EXIT;

if (new_thread->thread_state == THRD_INIT)
special_action |= ACTION_INIT;

current_thread = new_thread;
/* If everything goes well. */

old_thread->thread_state = THRD_STOPPED;
/* Have to do this here; will not have another chance
later. */

thread_yield(&(old_thread->thread_context),
&(new_thread->thread_context),
special_action);

/* The following will never be reached if the thread
was exiting. */

return error_code;

Reminder: Structure of a Scheduler
(conceptual structure)

determine location in queue

SVt

head
tail

!
rl jo—__Je—PcBle— o 1 |

e Incoming process is put into right location in ready queue.

e Dispatcher always picks first element in ready queue.

CPU

14

CPSC 410/ 611 : Operating Systems

Dispatching and Scheduling

class FIFOScheduler : public Scheduler {
protected:
Queue ready_queue; /* The ready processes queue up here. */

virtual int remove_thread(Thread * thr) {

/* Remove the Thread from the ready_queue. */
int return_code = ready_queue.remove(Cthr);
assert(return_code == 0);
return return_code;

}

virtual Thread * first_ready() {

/* Removes first thread from ready queue and returns it. This method is used in 'yield'. */
Thread * new_thread = (Thread*)ready_queue.get();

}

virtual int enqueue(Thread * _thr) {

/* Puts given thread in ready queue. This method is used in 'resume'. */
ready_queue.put(_thr);

}

public:

FIFOScheduler() : Scheduler(); ready_queue() {}
/* Instantiate a new scheduler. This has to be done during 0S startup. */

1

Low-Level Dispatching, MIPS-style

LEAF(thread_yield)
a@ : pointer to current thread’s context frame
al : pointer to new thread’s context frame
a2 .AND. ACTION_INIT != @ -> new thread just initialized.
a2 .AND. ACTION_EXIT != @ -> old thread exits. do not save state.
: other -> simple context switch.

1i t1, ACTION_EXIT
and t3, t1, a2
bnez t3, start_switch # -- IF THREAD EXISTS, SKIP STATE SAVING

IF THREAD IS EXITING, POINTER TO PROCESSOR STATE TABLE IS LIKELY INVALID.

SW s@, SO_OFF(ad) # -- SAVE CURRENT STATE
sw s6, S6_OFF(a@)
sw s7, S7_OFF(a@)
SW gp, GP_OFF(a@)
sw ra, RA_OFF(a@)
sw fp, FP_OFF(a@)
sw sp, SP_OFF(a@)
start_switch:
w s@, SO_OFF(Cal) # -- LOAD REGISTERS FOR NEW TASK
1w s7, S7_OFF(al)
w gp, GP_OFF(al)
w ra, RA_OFF(al)
w fp, FP_OFF(al)
w sp, SP_OFF(al)

(continue on next slide)

CPSC 410/ 611 : Operating Systems

Low-Level Dispatching, MIPS-style (2)

(from previous slide:
1. unless ACTION_EXIT, save state of old thread.
2. load state of new thread.

1i t1, ACTION_INIT
and t3, t1, a2
beqz t3, simple_switch

this is a new thread starting, load init PC and start from there.
w t2, PC_OFF(al)
jalr ra, t2

at this point the thread function has completed. stop the thread.
XXXXX NEED TO FILL IN CODE !!!!

simple_switch:
the new thread is all ready to go, just start.
3 ra

END(thread_yield)

Simple Preemptive Scheduling

class RRScheduler : public FIFOScheduler { clqss EndOfQuantumEvent : public TimerEvent {

private: private:
unsigned int time_quantum; RRScheduler * sched;
Timer * quantum_timer; public:
friend class EndOfQuantumEvent; EndOfQuantumEvent(RRScheduler * _sched) {

sched = _sched;
void handle_end_of_quantum(EXCEPTION_CONTEXT * _xcp) {

quantum_timer->set(time_quantum, _xcp->compare); void event_handler(EXCEPTION_CONTEXT * _xcp) {
if (task_ready()) { clear_ex1Q);
resume(current_thread); sched->handle_end_of_quantum(_xcp);
Scheduler: :yield();
3} I
}
public:
RRScheduler(unsigned int _quantum) : FIFOScheduler()
time_quantum = _quantum;
EndofQuantumEvent * eoq_ev = new EndOfQuantumEvent(this);
quantum_timer = new Timer(eoq_ev);
}

virtual int start() {
quantum_timer->set(time_quantum);
FIFOScheduler: :startQ);

}

virtual int yield() {
quantum_timer->clear();
quantum_timer->set(time_quantum);
Scheduler: :yield();

}

3

