
CPSC-410/611 Operating Systems Process Synchronization

1

Process Management: Synchronization

• Why? Examples

• What? The Critical Section Problem

• How? Software solutions

• Hardware-supported solutions

• The basic synchronization mechanism:

Semaphores

• More sophisticated synchronization

mechanisms: Monitors, Message Passing

• Classical synchronization problems

Process Management: Synchronization

• Why? Examples

• What? The Critical Section Problem

• How? Software solutions

• Hardware-supported solutions

• The basic synchronization mechanism:

Semaphores

• More sophisticated synchronization

mechanisms: Monitors, Message Passing

• Classical synchronization problems

CPSC-410/611 Operating Systems Process Synchronization

2

The Critical Section Problem: Example 1

char in; /* shared variables */
char out;

void echo() {
 input(in, keyboard);
 out := in;
 output(out, display);
}

 Process 1 Process 2

Operation: Echo() Echo()

Interleaved
execution

ﾉ
input(in,keyboard)
out = in;

ﾉ
ﾉ
ﾉ
output(out,display)

ﾉ
ﾉ
ﾉ
input(in,keyboard);
out = in;
output(out,display);

ﾉ

Race condition !

The Critical Section Problem: Example 2

Producer-consumer with bounded, shared-memory, buffer.

Consumer:

Item * remove() {
 while (counter == 0) no_op;
 next = buffer[out];
 out = (out+1) MOD n;
 counter = counter - 1;
 return next;
}

out

in

Producer:

void deposit(Item * next) {
 while (counter == n) no_op;
 buffer[in] = next;
 in = (in+1) MOD n;
 counter = counter + 1;
}

circular buffer of size n

int in, out;
Item buffer[n];
int counter;

CPSC-410/611 Operating Systems Process Synchronization

3

This Implementation is not Correct!

Producer
counter = counter + 1

reg1 = counter

reg1 = reg1 + 1

counter = reg1

reg1 = counter

reg1 = reg1 + 1

counter = reg1

Consumer
counter = counter - 1

reg2 = counter

reg2 = reg2 - 1

counter = reg2

reg2 = counter

reg2 = reg2 - 1

counter = reg2

operation:

on CPU:

interleaved

execution:

• Race condition!

• Need to ensure that only one process can manipulate variable counter at a
time : synchronization.

prev

prev

prev

prev prev

prev

prev prev

prev

prev prev

prev

prev prev

prev

Critical Section Problem: Example 3

Insertion of an element into a list.
void insert(new, curr) {
 /*1*/ new.next = curr.next;
 /*2*/ new.prev = c.next.prev;
 /*3*/ curr.next = new;
 /*4*/ new.next.prev = new;
}

next

next next

new

curr

next

next next

new

curr

next

next next

new

curr next

next next

new

curr

next

next next

new

curr

1.

2.

3.

4.

CPSC-410/611 Operating Systems Process Synchronization

4

Interleaved Execution causes Errors!

new1.next = curr.next;
new1.prev = c.next.prev;
…
…
…
…
curr.next = new1;
new.next.prev = new1;

Process 1

…
…
new2.next = curr.next;
new2.prev = c.next.prev;
curr.next = new2;
new.next.prev = new2;
…
…

Process 2

prev

prev prev

next

next next

new1

curr

prev

next

new2

• Must guarantee mutually exclusive access to list data structure!

Process Management: Synchronization

• Why? Examples

• What? The Critical Section Problem

• How? Software solutions

• Hardware-supported solutions

• The basic synchronization mechanism:

Semaphores

• More sophisticated synchronization

mechanisms: Monitors, Message Passing

• Classical synchronization problems

CPSC-410/611 Operating Systems Process Synchronization

5

Critical Sections

• Execution of critical section by processes must be mutually
exclusive.

• Typically due to manipulation of shared variables.

• Need protocol to enforce mutual exclusion.

while (TRUE) {

 enter section;

 critical section;

 exit section;

 remainder section;

}

Criteria for a Solution of the C.S. Problem

1. Only one process at a time can enter the critical section.

2. A process that halts in non-critical section cannot prevent other

processes from entering the critical section.

3. A process requesting to enter a critical section should not be

delayed indefinitely.

4. When no process is in a critical section, any process that

requests to enter the critical section should be permitted to

enter without delay.

5. Make no assumptions about the relative speed of processors (or

their number).

6. A process remains within a critical section for a finite time only.

CPSC-410/611 Operating Systems Process Synchronization

6

A (Wrong) Solution to the C.S. Problem

• Two processes P0 and P1

• int turn; /* turn == i : Pi is allowed to enter c.s. */

Pi: while (TRUE) {

 while (turn != i) no_op;

 critical section;

 turn = j;

 remainder section;

 }

Another Wrong Solution

bool flag[2]; /* initialize to FALSE */
/* flag[i] == TRUE : Pi intends to enter c.s.*/

Pi: while (TRUE) {

 while (flag[j]) no_op;
 flag[i] = TRUE;

 critical section;

 flag[i] = FALSE;

 remainder section;

 }

CPSC-410/611 Operating Systems Process Synchronization

7

Yet Another Wrong Solution

bool flag[2]; /* initialize to FALSE */
/* flag[i] == TRUE : Pi intends to enter c.s.*/

while (TRUE) {

 flag[i] = TRUE;
 while (flag[j]) no_op;

 critical section;

 flag[i] = FALSE;

 remainder section;

}

A Combined Solution (Petersen)
int turn;

bool flag[2]; /* initialize to FALSE */

while (TRUE) {

 flag[i] = TRUE;
 turn = j;
 while (flag[j]) && (turn == j) no_op;

 critical section;

 flag[i] = FALSE;

 remainder section;

}

CPSC-410/611 Operating Systems Process Synchronization

8

Process Management: Synchronization

• Why? Examples

• What? The Critical Section Problem

• How? Software solutions

• Hardware-supported solutions

• The basic synchronization mechanism:

Semaphores

• More sophisticated synchronization

mechanisms: Monitors, Message Passing

• Classical synchronization problems

Hardware Support For Synchronization

• Disallow interrupts

– simplicity

– widely used

– problem: interrupt service latency

– problem: what about multiprocessors?

• Atomic operations:

– Operations that check and modify memory areas in
a single step (i.e. operation can not be interrupted)

– Test-And-Set

– Exchange, Swap, Compare-And-Swap

CPSC-410/611 Operating Systems Process Synchronization

9

Test-And-Set

bool TestAndSet(bool & var) {

 bool temp;

 temp = var;

 var = TRUE;

 return temp;

}

bool lock; /* init to FALSE */

while (TRUE) {

 while (TestAndSet(lock)) no_op;

 critical section;

 lock = FALSE;

 remainder section;

}

a
to

m
ic

!

Mutual Exclusion with

Test-And-Set

Exchange (Swap)

void Exchange(bool & a, bool & b){

 bool temp;

 temp = a;

 a = b;

 b = temp;

}

bool lock; /*init to FALSE */

while (TRUE) {

 dummy = TRUE;
 do Exchange(lock, dummy);
 while(dummy);

 critical section;

 lock = FALSE;

 remainder section;
}

a
to

m
ic

!

Mutual Exclusion with

Exchange

CPSC-410/611 Operating Systems Process Synchronization

10

Process Management: Synchronization

• Why? Examples

• What? The Critical Section Problem

• How? Software solutions

• Hardware-supported solutions

• The basic synchronization mechanism:

Semaphores

• More sophisticated synchronization

mechanisms: Monitors, Message Passing

• Classical synchronization problems

Semaphores

• Problems with solutions above:

– Although requirements simple (mutual exclusion), addition to
programs complex.

– Based on busy waiting.

• A Semaphore variable has two operations:
– V(Semaphore * s);

/* Increment value of s by 1 in a single indivisible action. If
value is not positive, then a process blocked by a P is
unblocked*/

– P(Semaphore * s);

/* Decrement value of s by 1. If the value becomes negative,
the process invoking the P operation is blocked. */

• Binary semaphore: The value of s can be either 1 or 0 (TRUE or
FALSE).

• General semaphore: The value of s can be any integer.

CPSC-410/611 Operating Systems Process Synchronization

11

Effect of Semaphores

• Mutual exclusion with
semaphores:

V(s)

P(s)

V(s)

P(s)

s.value = 0

BinSemaphore * s;
/* init to TRUE*/

while (TRUE) {

 P(s);

 critical section;

 V(s);

 remainder section;
}

• Synchronization using
semaphores:

Implementation (with busy waiting)

• Binary Semaphores:

P(BinSemaphore * s) {

 key = FALSE;

 do exchange(s.value, key);

 while (key == FALSE);

}

V(BinSemaphore * s) {

 s.value = TRUE;

}

• General Semaphores:

BinSemaphore * mutex /*TRUE*/

BinSemaphore * delay /*FALSE*/

P(Semaphore * s) {

 P(mutex);

 s.value = s.value - 1;

 if (s.value < 0)

 { V(mutex); P(delay); }

 else V(mutex);

}

V(Semaphore * s) {

 P(mutex);

 s.value = s.value + 1;

 if (s.value <= 0) V(delay);

 V(mutex);

}

CPSC-410/611 Operating Systems Process Synchronization

12

Implementation (“without” busy waiting)

P(Semaphore * s) {

 while (TestAndSet(lock))

 no_op;

 s.value = s.value - 1;

 if (s.value < 0) {

 append(this_process, s.L);

 lock = FALSE;

 sleep();

 }

 lock = FALSE;

}

Semaphore

bool lock;

 /* init to FALSE */

int value;

PCBList * L;

blocked processes

V(Semaphore * s) {

 while (TestAndSet(lock))

 no_op;

 s.value = s.value + 1;

 if (s.value <= 0) {

 PCB * p = remove(s.L);

 wakeup(p);

 }

 lock = FALSE;

}

Problems with Semaphores

• Deadlocks:

– Process is blocked waiting for an event only it can
generate.

P1

P(s)
P(q)
...
V(s)
V(q)

P2

P(q)
P(s)
...
V(q)
V(s)

s.value = 1
q.value = 1

CPSC-410/611 Operating Systems Process Synchronization

13

Process Management: Synchronization

• Why? Examples

• What? The Critical Section Problem

• How? Software solutions

• Hardware-supported solutions

• The basic synchronization mechanism:

Semaphores

• More sophisticated synchronization

mechanisms: Monitors, Message Passing

• Classical synchronization problems

Classical Problems: Producer-Consumer

Producer:

while (TRUE) {

 produce item;

 P(mutex);

 deposit item;

 V(mutex);
 V(n);

}

Consumer:

while (TRUE) {

 P(n);
 P(mutex);

 remove item;

 V(mutex);

 consume item;

}

Semaphore * n; /* initialized to 0 */
BinSemaphore * mutex; /* initialized to TRUE */

CPSC-410/611 Operating Systems Process Synchronization

14

Classical Problems:
Producer-Consumer with Bounded Buffer

Producer:

while (TRUE) {

 produce item;

 P(empty);
 P(mutex);

 deposit item;

 V(mutex);
 V(full);

}

Consumer:

while (TRUE) {

 P(full);
 P(mutex);

 remove item;

 V(mutex);
 V(empty);

 consume item;

}

Semaphore * full; /* initialized to 0 */
Semaphore * empty; /* initialized to n */
BinSemaphore * mutex; /* initialized to TRUE */

• 5 philosophers around a table, a plate in front of each
philosopher, one chopstick between any two plates.

• When philosopher get hungry, he must grab both chopsticks in
order to be able to eat.

• Problem: deadlock

Classical Problems:

Dining Philosophers

Semaphore * chopstick[4]; /* initialize to 1 */

while (TRUE) {
 P(chopstick[i]);
 P(chopstick[(i+1) mod 5]);

 eat ...
 V(chopstick[i]);
 V(chopstick[(i+1) mod 5]);
 think ...
}

CPSC-410/611 Operating Systems Process Synchronization

15

Classical Problems:

The Barbershop

entry

door

exit

door

cashier

barber chairs (3)

standing

room area

sofa (capacity 4)

barber shop (capacity 20)
Semaphore * max_capacity;
/* init to 20 */
Semaphore * sofa;
/* init to 4 */
Semaphore * barber_chair;
/* init to 3 */
Semaphore * coord;
/* init to 3 */

Semaphore * cust_ready;
/* init to 0 */
Semaphore * leave_b_chair;
/* init to 0 */
Semaphore * payment;
/* init to 0 */
Semaphore * receipt;
/* init to 0 */

Process cashier:

for(;;){
 P(payment);
 P(coord);
 <accept pay>

 V(coord);
 V(receipt);
 }

The Barbershop (cont)
Process customer:

P(max_capacity);
<enter shop>

P(sofa);
<sit on sofa>

P(barber_chair);
<get up from sofa>

V(sofa);
<sit in barber chair>

V(cust_ready);
P(finished);
<leave barber chair>

V(leave_b_chair);
<pay>

V(payment);
P(receipt);
<exit shop>

V(max_capacity);

Process barber:

for(;;){
 P(cust_ready);
 P(coord);
 <cut hair>

 V(coord);
 V(finished);

 P(leave_b_chair);
 V(barber_chair);

}

CPSC-410/611 Operating Systems Process Synchronization

16

The Fair Barbershop
Process customer:

P(max_capacity);

<enter shop>

P(mutex1);

custnr := ++count;

V(mutex1);

P(sofa);

<sit on sofa>

P(barber_chair);

<get up from sofa>

V(sofa);

<sit in barber chair>

P(mutex2);

enqueue(custnr);

V(cust_ready);

V(mutex2);

P(finished[custnr]);

<leave barber chair>

V(leave_b_chair);

<pay>

V(payment);

P(receipt);

<exit shop>

V(max_capacity);

Process barber:

for(;;){
 P(cust_ready);
 P(mutex2);
 dequeue(b_cust);
 V(mutex2);
 P(coord);
 <cut hair>

 V(coord);
 V(finished[b_cust]);
 P(leave_b_chair);
 V(barber_chair);

}

Process cashier:

for(;;){
 P(payment);
 P(coord);
 <accept pay>

 V(coord);
 V(receipt);

 }

Classical Problems: Readers/Writers

Reader:

P(mutex);
 nreaders = nreaders + 1;
 if (nreaders == 1) P(wrt);
V(mutex);

do the reading

P(mutex);

 nreaders = nreaders - 1;
 if (nreaders = 0) V(wrt);
V(mutex);

Semaphore * mutex, * wrt; /* initialized to 1 */
int nreaders; /* initialized to 0 */

Writer:

P(wrt);

do the writing ...

V(wrt);

• Multiple readers can access data element concurrently.
• Writers access data element exclusively.

CPSC-410/611 Operating Systems Process Synchronization

17

Incorrect Implementation of Readers/Writers

monitor ReaderWriter{

 int numberOfReaders = 0;

 int numberOfWriters = 0;

 boolean busy = FALSE;

 /* READERS */

 procedure startRead() {

 while (numberOfWriters != 0);

 numberOfReaders = numberOfReaders + 1;
 }

 procedure finishRead() {

 numberOfReaders = numberOfReaders - 1;

 }

 /* WRITERS */

 procedure startWrite() {

 numberOfWriters = numberOfWriters + 1;

 while (busy || (numberOfReaders > 0));
 busy = TRUE;

 };

 procedure finishWrite() {

 numberOfWriters = numberOfWriters - 1;

 busy = FALSE;

 };

 };

A Correct Implementation

monitor ReaderWriter{

 int numberOfReaders = 0;

 int numberOfWriters = 0;

 boolean busy = FALSE;

condition okToRead, okToWrite;

 /* READERS */

 procedure startRead() {

 if (busy || (okToWrite.lqueue)) okToRead.wait;

 numberOfReaders = numberOfReaders + 1;

 okToRead.signal;

 }

 procedure finishRead() {

 numberOfReaders = numberOfReaders - 1;

 if (numberOfReaders = 0) okToWrite.signal;

 }

 /* WRITERS */

 procedure startWrite() {

 if (busy || (numberOfReaders > 0)) okToWrite.wait;

 busy = TRUE;

 };

 procedure finishWrite() {

 busy = FALSE;

 if (okToWrite.lqueue) okToWrite.signal;
 else okToRead.signal;

 };

 };

CPSC-410/611 Operating Systems Process Synchronization

18

Process Management: Synchronization

• Why? Examples

• What? The Critical Section Problem

• How? Software solutions

• Hardware-supported solutions

• The basic synchronization mechanism:

Semaphores

• Classical synchronization problems

• More sophisticated synchronization

mechanisms: Monitors, Message Passing

Higher-Level Synchronization Primitives

• Semaphores as the “GOTO” among the synchronization
primitives.

– very powerful, but tricky to use.

• Need higher-abstraction primitives, for example:

– Monitors

– synchronized primitive in JAVA

– Protected Objects (Ada95)

– Conditional Critical Regions

– Message Passing

CPSC-410/611 Operating Systems Process Synchronization

19

Monitors (Hoare / Brinch Hansen, 1973)

• Safe and effective sharing of abstract data types among several
processes.

• Monitors can be modules, or objects.
– local variable accessible only through monitor’s procedures
– process can entrer monitor only by invoking monitor procedure

• Only one process can be active in monitor.
• Additional synchronization through conditions (similar to

semaphores)
Condition c;

c.cwait() : suspend execution of calling process and enqueue it
on condition c. The monitor now is available for other
processes.

c.csignal() : resume a process enqueued on c. If none is
enqueued, do nothing.

– cwait/csignal different from P/V: cwait always waits,
csignal does nothing if nobody waits.

Structure of Monitor

initialization code

local (shared) data

procedure 1

procedure 2

procedure k

...

operations

blocked

processes

c1

cm

...

urgent queue

CPSC-410/611 Operating Systems Process Synchronization

20

Example: Binary Semaphore

monitor BinSemaphore {

 bool locked; /* Initialize to FALSE */

 condition idle;

 entry void P() {

 if (locked) idle.cwait();

 locked = TRUE;

 }

 entry void V() {

 locked = FALSE;

 idle.csignal();

 }

}

Example: Bounded Buffer Producer/Consumer

void deposit(Item x) {

 if (count == N)

 notfull.cwait();

 buffer[nextin] = x;

 nextin = nextin + 1 mod
N;

 count = count + 1;

 notempty.csignal();

}

void remove(Item & x) {
 if (count == 0)
 notempty.cwait();
 x = buffer[nextout];
 nextout = nextout + 1 mod N;
 count = count - 1;
 notfull.csignal();
}

monitor boundedbuffer {
 Item buffer[N]; /* buffer has N items */
 int nextin; /* init to 0 */

 int nextout; /* init to 0 */
 int count; /* init to 0 */
 condition notfull; /* for synchronization */
 condition notempty;

CPSC-410/611 Operating Systems Process Synchronization

21

Monitors: Issues, Problems

• What happens when the x.csignal() operation invoked by
process P wakes up a suspended process Q?
– Q waits until P leaves monitor?
– P waits until Q leaves monitor?
– csignal() vs cnotify()

• Nested monitor call problem.
• Conditional wait construct (better called priority wait

construct):
x.cwait(c); /* c is integer expression. */

• Caution when implementing schedule-sensitive code using
monitors! (e.g. When moving resource-access control
algorithms into monitors.) Resource scheduling may operate
according to monitor scheduling algorithm, rather than the one
that is being coded.

Synchronization in JAVA

• Critical sections:

– synchronized statement

• Synchronized methods:

– Only one thread can be in any synchronized method of an
object at any given time.

– Realized by having a single lock (also called monitor) per
object.

• Synchronized static methods:

– One lock per class.

• Synchronized blocks:

– Finer granularity possible using synchronized blocks

– Can use lock of any object to define critical section.

• Additional synchronization:

– wait(), notify(), notifyAll()
– Realized as methods for all objects

CPSC-410/611 Operating Systems Process Synchronization

22

public class BoundedBuffer {

 Object[] buffer;

 int nextin

 int nextout;

 int size

 int count;

synchronized public deposit(Object x){

 if (count == size) nextin.wait();

 buffer[nextin] = x;

 nextin = (nextin+1) mod N;

 count = count + 1;

 nextout.notify();

}

Java Synchronized Methods:
vanilla Bounded Buffer Producer/Consumer

synchronized public Object remove() {

 Object x;

 if (count == 0) nextout.wait();

 x = buffer[nextout];

 nextout = (nextout+1) mod N;

 count = count - 1;

 nextin.notify();

 return x;

}

public BoundedBuffer(int n) {

 size = n;

 buffer = new Object[size];

 nextin = 0;

 nextout = 0;

 count = 0;

}

Example: Synchronized Block
(D. Flanagan, JAVA in a Nutshell)

public static void SortIntArray(int[] a) {
 // Sort array a. This is synchronized so that
 // some other thread cannot change elements of

 // the array or traverse the array while we are

 // sorting it.

 // At least no other thread that protect their

 // accesses to the array with synchronized.

 // do some non-critical stuff here...

 synchronized (a) {
 // do the array sort here.
 }

 // do some other non-critical stuff here...

}

CPSC-410/611 Operating Systems Process Synchronization

23

Message Passing

• The Primitives:

send(destination, message);

receive(source, message);

• Issues:

– Synchronization (blocking vs non-blocking
primitives)

– Addressing (direct vs. indirect communication)

– Reliability / Ordering (reliable vs. unreliable)

Message Passing: Synchronization

send

receive

blocking non-blocking

Returns control as soon as

message queued or copied.

Signals willingness to

receive message.

Buffer is ready.

Returns control to user

only after message has

been sent, or until

acknowledgment has

been received.

Returns only after message

has been received.

•Need buffering:

•still blocking

•deadlocks!

•Tricky to program.

•Reduces concurrency.

problems

CPSC-410/611 Operating Systems Process Synchronization

24

Message Passing: Synchronization (cont)

Combinations of primitives:

• Blocking send, blocking receive

– rendezvous

• Nonblocking send, blocking receive

• Nonblocking send, nonblocking receive

