CPSC-410/611 Operating Systems

Deadlocks

The Deadlock Problem

Examples

Interlude on Mars

Resource and system model, and exact definitions
Solutions:

- Prevention

- Avoidance

- Detection and recovery

Reading: Silberschatz, Chapter 7

The Deadlock Problem

When some processes are blocked on resource requests that can never
be satisfied unless drastic systems action is taken, the processes are
said to be deadlocked.

- In modern computer systems, possibilities for deadlocks have
increased:

+ dynamic resource sharing
+ parallel programming
* communicating processes
Example: River crossing on a narrow bridge

[T T T T 11T
TN _

- need an agreed-upon protocol

Deadlocks

CPSC-410/611 Operating Systems

Examples of Deadlocks

File Sharing
Pl:
Request (D) ;

Request (T) ;

Release (T);
Release (D) ;

P2:
Request (T) ;
Request (D) ;

Release (D) ;
Release (T) ;

Single Resource Sharing
A single resource R contains m
allocation units, and is shared by
n processes, and each process
accesses R in the sequence

Req(R);Req(R);Rel(R);Rel(R);
Example: shared buffers in I/O
subsystem

can occur.

Pl:
lock(R1);

lock (R2) ;

Locking in Database Systems
If locking done at any level lower
than entire database, deadlock

P2:
lock (R2) ;

lock(R1);

An Extreme Example
(Holt 1971) in PL/T

revenge: procedure
options (main, task);

wait (event) ;

end {revenge}

Interlude: Not-Quite-Deadlock ... on Mars!

Landing on July 4, 1997
"experiences software glitches"

Pathfinder experiences repeated
RESETs after starting gathering
of meteorological data.

RESETs generated by watchdog
process.

Timing overruns caused by priority
inversion.

Resources:

http://research.microsoft.com/
~mbj/Mars Pathfinder/

Deadlocks

CPSC-410/611 Operating Systems Deadlocks

Priority Inversion on Mars Pathfinder

Task bc_sched
e]| o v
~
. -— ———————— A
Task bc_dist 5

high priority

other tasks

—— e o o)

Task AST /MET

locks mutex

low priority

| gets preempted

The Resource Model

* Finite number of serially reusable resources R, ..., R, ..
+ Serially reusable:
- number of units is constant

- either available or allocated to exactly one process
(no sharing)

- process may release a unit only if it previously
acquired it.

+ Seft of processes P, ., ..., P,.
+ Operations on resources:

- request: If request cannot be granted, wait until
some other process releases resource

- use
- release

CPSC-410/611 Operating Systems Deadlocks

Necessary Conditions for Deadlocks

1. Mutual exclusion: If two processes request aresource, at least
onhe must wait until the resource has been released.

2. Hold and wait: At least one process must be holding a resource
and be waiting to acquire additional resources.

3. No preemption: Resources can only be released voluntarily by a
process.

4. Circular wait: (see next slides)

Resource Allocation Graphs

System Resource Allocation Graph
6=(V,E)
V= {P,R} = vertices
E = edges
where
P={P, P,, .., P} set of processes.
R={R,, R,, .., R,}: set of resources.

Edges represent waiting-for or allocated-to relations.

(P, R)in G: Process P, is waiting for Resource R; (request edge)

(R, P)in G: Resource R; is allocated to Process P, (assignment edge)

R F—(p)

CPSC-410/611 Operating Systems Deadlocks

Resource Allocation Graphs: Example

V=(P={P, P}, R={R)})
mn‘/a/ {(RI P 2)}
Efina = {(R1, P2), (Ry, P}

i e

Request Acquisition Release

Resource Allocation Graphs and Deadlocks

Observation 1: If a RAG does not have a cycle, then no process
is deadlocked.

Observation 2: If a RAG has a cycle, then a deadlock may exist.

The existence of cycles in the RAG is necessary but not
sufficient for a deadlock.

Example:
SENRENE AEVRENE
Y
® & ® ®
R, 5 o R, o d
cycle, no deadlock cycle, deadlocked

CPSC-410/611 Operating Systems Deadlocks

Special Cases

- Single-unit resources: A cycle becomes a sufficient
and necessary condition for deadlock:

- necessary: shown earlier

- sufficient: Every process in a cycle ¢ must have an
entering and an exiting edge. Therefore, it must
hold a resource in C while it has an outstanding
request for resources in C. Every resource in Cis
held by some process in C. Therefore, every process
in C'is blocked by a resource in ¢ that can be made
available only by a process in C.

Deadlock Prevention

Prevent occurrence of deadlock by preventing occurrence
of any one of the 4 necessary conditions for deadlock.

CPSC-410/611 Operating Systems Deadlocks

Deadlock Prevention: (1) Mutual Exclusion

A processor never needs o wait for shareable resources.
Make resources shareable!
Fine with read-only files (may not need exclusive access)

Huh?! A shareable lock?!

Deadlock Prevention: (2) Hold and Wait

Guarantee that a processor requesting resources does not hold resources
already.

- Protocol 1: Assign resources at beginning of execution.
- Protocol 2: Allow process to request resources only if it has none.

Example:
Protocol 1 > > |_
Protocol 2 T
| >
Problems: actual resource
- Low resource utilization requirement
- Starvation

CPSC-410/611 Operating Systems Deadlocks

Deadlock Prevention: (3) No Preemption

Make resources preempftive.

Example protocols:

- Preempt resources held by a process when that process is
denied request of a resource.

- Preempt resource held by a process when that particular
resource is requested by another process.

Problem: Some resources are inherently non-preemptive.
- Message slots on communication links, printer, tapes, locks.

Deadlock Prevention: (3) Circular Wait

Impose a total ordering on resources and request resources in
increasing order.

Ordering:
F:R>N

Request resources in order of their increasing value of F.

No circular wait condition can occur.

CPSC-410/611 Operating Systems Deadlocks

Deadlock Avoidance

Deadlock prevention: restrict the way how requests can be made
a priori. Problem: low device utilization

Alternative: Treat each request individually, and temporarily
delay it when it may cause a deadlock later.

Need additional information about requesting process: How much
information?

only current request vs. complete request sequence

Compromise: e.g. information about which resources process may
request in the future (and maximum amount of each). Example:
- Database application: 2 locks per database, 20 blocks of
memory, 10 blocks of temporary disk space
- Scientific computation: 300 blocks of memory, 500 blocks of
temporary disk space, printer.

Resource Allocation States

Resource allocation state: Number of allocated resources,
available resources, maximum claims of processes.

Safe sequence: Sequence of process execution (P, ..., P,) (each
process runs to completion) such that all processes can
successfully terminate, starting from given resource allocation
state.

Safe resource allocation state: There is at least one safe
sequence for the state.

Unsafe resource allocation state: No safe sequence exists.

Unsafe states may lead to deadlocks.

CPSC-410/611 Operating Systems Deadlocks

A Scheme for Deadlock Avoidance

Observation 1: A system in a safe state is not deadlocked.

Observation 2: Delaying a request does not change a safe state
into an unsafe state.

Scheme: Whenever a process requests a resource that is
available, check whether granting the request would move the
system info an unsafe state. If so, delay the request.

Problem: Reduction of resource utilization.

The Banker's Algorithm (Dijkstra, Haberman)

Have every process declare its maximum resource requirements (/.e.
maximum number of units required for each resource).

Whenever process requests resources, determine (in the request ()
routine) if granting the request at this time leaves system in safe state.
If not, delay the request.

Data structures:
int available[m];/
int max, [m];

int alloc;[m];

int need, [m];
Partial relation "<=" on vectors:
xin Nm, y in Nm: x <=y iff forall i =0,...m-1: x[i] <= y[i]
<1,1,1> <= <25,7>
<1,1,1>NOT <= <2,0,7>

10

CPSC-410/611 Operating Systems

The Banker's Algorithm

P;:
void request (int req vec[]) {
if (reg_vec >= need,)
raise hell(); /* exceeded promised maximum */
if (reg_vec >= available)
wait(); /* resources not available */
available -= req_vec;
alloc; += reqg_vec;
need; -= req_vec;
if (! state is_safe()) {
available += req vec; /* restore old state */
alloc; -= req_vec;
need; += reqg_vec;
wait(); /* wait until state would be safe */

Determine Safety of State

int state is safe() {
int temp_av([m] = available;
bool finish[n] = (FALSE, ...,FALSE);
int 1i;

while (finish!=(TRUE, ...TRUE)) {
/* Find P; such that finish[i] = FALSE and */
/* need; <= temp av. */
for (i=0; (i<n)é&&(finish[i] || (need; > temp_av); i++)
if (1 == n) {
return FALSE;
}
else {
temp av += alloc;;
finish[i] = TRUE;

}
return TRUE;

{

Deadlocks

11

CPSC-410/611 Operating Systems Deadlocks

Banker's Algorithm: Example
R1(7) R2(7) R3(7)

max: P1 5 3 1

P2 3 2 3

P3 2 3 1 Four examples:

P4 5 0 3
alloe:Pl 3 3 . P2: request([1,1,1])

P2 2 2 2

P3 0 1 1

Ps 0 0 1 P2: request([1,0,1])
need: P1 2 0 0

P21 0 . P4: request([5,0,0])

P3 2 2 0

P4 5 0 2

P3: request([2,0,0])

available:2 1 2

Single-Unit Resources: Claim Graphs

Claim graph: Variation of resource allocation graph (RAG).

- claim edge (P, R;) : Process P; may request resource R;
sometimes in the future.

ffffffff D] D@ =] DE[x

request acquisition release

e Whenever new process starts, we add its claim edges to the
RAG.

® Whenever process request resources, test if acquisition would
generate a cycle in the RAG (causing an unsafe state).

R, R,
P) —> (p \ P,

“R, P,: request(R,) R

12

CPSC-410/611 Operating Systems

Deadlock Detection & Recovery

+ Deadlock prevention and avoidance are cautious approaches.
May overly reduce resource utilization.

+ Alternative: Periodically analyze RAG, detect deadlocks, and
initiate recovery.

* Advantages:
- A priori knowledge of resource requirements not needed.
- Higher resource utilization

- Disadvantages:
- Cost of recovery

Multiple-Unit Resources

int available[m]; /* resources available */
int alloc;[m]; /* resources allocated to P; */
int rec _vec;[m]; /* currently requested by P; */
int temp_av[m] = available;
bool finish[n] = (FALSE, ..., FALSE);
bool found = TRUE;
for (i=0, i<n, i++)

if (rec vec; == (0,...,0)) finish[i] = TRUE;

while (found) {
found = FALSE;
for (i=0, (i<n) && (!found), i++) {
if ((!finish[i]) && (reg vec; < temp_av))
/* assume P; runs to completion */
{temp av += alloc;; finish[i]=TRUE; found=TRUE; }

}
/* for any finish[i] == FALSE, P; is deadlocked */

Deadlocks

13

CPSC-410/611 Operating Systems

Deadlock Detection: Example

R1(7) R2(7) R3(7)
alloc:P1 2 3 0
P2 2 2 2
P3 3 1 1
P4 O 0 4
req: Pl O 0 0
P2 1 0 1
P3 2 0 3
P4 5 0 0
available:0 1 0

Single-Unit Resources: Wait-For Graphs

Wait-For Graph: "RAG without resource nodes”
Example:

O
&~

H
~

NG Iy

:>\

@ —{&]

resource allocation graph wait-for graph

e Cycle in wait-for graph is necessary and sufficient

condition for deadlock.

Deadlocks

14

CPSC-410/611 Operating Systems

Cycle Detection in Wait-For Graphs

Vad W
S :=

: out-degree of node i */
{i | node i is a sink};

for all i in S do begin
for all j such that (j,i) is edge do begin
delete edge(j,1i):

Wy 1= &;—l;
if w. = 0 then S := S + {j};
end;
end;
if (S <> N) then cycle exists;

Cycle Detection in Directed Graphs (Pseudocode)

How to Use Deadlock Detection:

+ How frequently to invoke deadlock detection:
- after every request vs. at longer intervals

- indication-triggered (e.g. drop in CPU utilization)

* Recovery from deadlock:
- Termination of deadlocked processes.
- Preemption of resources (may require process rollback)
- Policies for termination/rollback.

Deadlocks

15

CPSC-410/611 Operating Systems Deadlocks

The Engineer's Approach

Q: Why not ignore deadlocks altogether?

The Ostrich Algorithm (Tanenbaum): pretend there is no problem
Deadlocks in Unix:
- process table: size limits total number of processes
* scenario:
- process table with 100 entries.
- 10 processes that fork off 12 subprocesses each.
- i-node table: size limits the number of open files.
- efc

Most users prefer an occasional deadlock to a rule that unduly
restricts them.

16

