
CPSC-410/611 Operating Systems Deadlocks

1

Deadlocks

• The Deadlock Problem

• Examples

• Interlude on Mars

• Resource and system model, and exact definitions

• Solutions:

– Prevention

– Avoidance

– Detection and recovery

• Reading: Silberschatz, Chapter 7

The Deadlock Problem

• When some processes are blocked on resource requests that can never
be satisfied unless drastic systems action is taken, the processes are
said to be deadlocked.

– In modern computer systems, possibilities for deadlocks have
increased:

• dynamic resource sharing

• parallel programming

• communicating processes

• Example: River crossing on a narrow bridge

– need an agreed-upon protocol

CPSC-410/611 Operating Systems Deadlocks

2

Examples of Deadlocks
File Sharing Single Resource Sharing

A single resource R contains m
allocation units, and is shared by
n processes, and each process
accesses R in the sequence

Req(R);Req(R);Rel(R);Rel(R);
Example: shared buffers in I/O

subsystem

An Extreme Example
(Holt 1971) in PL/I

revenge: procedure
options(main,task);

 wait(event);

end {revenge}

Locking in Database Systems
If locking done at any level lower
than entire database, deadlock
can occur.

P1:
...
Request(D);
Request(T);
...
...
Release(T);
Release(D);

P2:
...
Request(T);
...
Request(D);
...
Release(D);
Release(T);

P1:
lock(R1);
...
lock(R2);
...

P2:
lock(R2);
...
lock(R1);
...

Interlude: Not-Quite-Deadlock … on Mars!

• Landing on July 4, 1997
• “experiences software glitches”
• Pathfinder experiences repeated

RESETs after starting gathering
of meteorological data.

• RESETs generated by watchdog
process.

• Timing overruns caused by priority
inversion.

• Resources:

http://research.microsoft.com/
~mbj/Mars_Pathfinder/

CPSC-410/611 Operating Systems Deadlocks

3

Priority Inversion on Mars Pathfinder

Task bc_dist

Task ASI/MET

other tasks

high priority

low priority

starts

locks mutex

gets preempted

becomes active

blocks on mutex
Task bc_sched

detects overrun

The Resource Model

• Finite number of serially reusable resources R1, ..., Rm.
• Serially reusable:

– number of units is constant
– either available or allocated to exactly one process

(no sharing)
– process may release a unit only if it previously

acquired it.
• Set of processes P1, P2, ..., Pn.
• Operations on resources:

– request: If request cannot be granted, wait until
some other process releases resource

– use
– release

CPSC-410/611 Operating Systems Deadlocks

4

Necessary Conditions for Deadlocks

1. Mutual exclusion: If two processes request a resource, at least
one must wait until the resource has been released.

2. Hold and wait: At least one process must be holding a resource
and be waiting to acquire additional resources.

3. No preemption: Resources can only be released voluntarily by a
process.

4. Circular wait: (see next slides)

Resource Allocation Graphs

System Resource Allocation Graph

G = (V, E)
V = {P,R} = vertices

E = edges

where

P = {P1, P2, ..., Pn} : set of processes.

R = {R1, R2, ..., Rm} : set of resources.

Edges represent waiting-for or allocated-to relations.

• (Pi, Rj) in G : Process Pi is waiting for Resource Rj (request edge)

• (Rj, Pi) in G : Resource Rj is allocated to Process Pi (assignment edge)

RjPi

Rj Pi

CPSC-410/611 Operating Systems Deadlocks

5

Resource Allocation Graphs: Example

V = (P = {P1, P2}, R = {R1})

Einitial = {(R1, P2)}

Efinal = {(R1, P2), (R1, P1)}

P1

P2

R1

P1

P2

R1

P1

P2

R1

P1

P2

R1

Request Acquisition Release

Resource Allocation Graphs and Deadlocks

• Observation 1: If a RAG does not have a cycle, then no process
is deadlocked.

• Observation 2: If a RAG has a cycle, then a deadlock may exist.

• The existence of cycles in the RAG is necessary but not
sufficient for a deadlock.

• Example:

P1 P2 P3 P4

R1

R3

R2

P1 P2 P3 P4

R1

R3

R2

cycle, no deadlock cycle, deadlocked

CPSC-410/611 Operating Systems Deadlocks

6

Special Cases

• Single-unit resources: A cycle becomes a sufficient
and necessary condition for deadlock:

– necessary: shown earlier

– sufficient: Every process in a cycle C must have an
entering and an exiting edge. Therefore, it must
hold a resource in C while it has an outstanding
request for resources in C. Every resource in C is
held by some process in C. Therefore, every process
in C is blocked by a resource in C that can be made
available only by a process in C.

Deadlock Prevention

Prevent occurrence of deadlock by preventing occurrence
of any one of the 4 necessary conditions for deadlock.

CPSC-410/611 Operating Systems Deadlocks

7

Deadlock Prevention: (1) Mutual Exclusion

• A processor never needs to wait for shareable resources.

• Make resources shareable!

• Fine with read-only files (may not need exclusive access)

• Huh?! A shareable lock?!

• Guarantee that a processor requesting resources does not hold resources
already.

– Protocol 1: Assign resources at beginning of execution.

– Protocol 2: Allow process to request resources only if it has none.

• Example:

• Problems:

– Low resource utilization

– Starvation

Deadlock Prevention: (2) Hold and Wait

Protocol 1

Protocol 2

actual resource
requirement

CPSC-410/611 Operating Systems Deadlocks

8

Deadlock Prevention: (3) No Preemption

• Make resources preemptive.

• Example protocols:

– Preempt resources held by a process when that process is
denied request of a resource.

– Preempt resource held by a process when that particular
resource is requested by another process.

• Problem: Some resources are inherently non-preemptive.

– Message slots on communication links, printer, tapes, locks.

Deadlock Prevention: (3) Circular Wait

• Impose a total ordering on resources and request resources in
increasing order.

• Ordering:

F : R ! N

• Request resources in order of their increasing value of F.

• No circular wait condition can occur.

CPSC-410/611 Operating Systems Deadlocks

9

Deadlock Avoidance

• Deadlock prevention: restrict the way how requests can be made
a priori. Problem: low device utilization

• Alternative: Treat each request individually, and temporarily
delay it when it may cause a deadlock later.

• Need additional information about requesting process: How much
information?

only current request vs. complete request sequence

• Compromise: e.g. information about which resources process may
request in the future (and maximum amount of each). Example:
– Database application: 2 locks per database, 20 blocks of

memory, 10 blocks of temporary disk space
– Scientific computation: 300 blocks of memory, 500 blocks of

temporary disk space, printer.

Resource Allocation States

• Resource allocation state: Number of allocated resources,
available resources, maximum claims of processes.

• Safe sequence: Sequence of process execution (P1, ..., Pn) (each
process runs to completion) such that all processes can
successfully terminate, starting from given resource allocation
state.

• Safe resource allocation state: There is at least one safe
sequence for the state.

• Unsafe resource allocation state: No safe sequence exists.

• Unsafe states may lead to deadlocks.

CPSC-410/611 Operating Systems Deadlocks

10

A Scheme for Deadlock Avoidance

• Observation 1: A system in a safe state is not deadlocked.

• Observation 2: Delaying a request does not change a safe state
into an unsafe state.

• Scheme: Whenever a process requests a resource that is
available, check whether granting the request would move the
system into an unsafe state. If so, delay the request.

• Problem: Reduction of resource utilization.

The Banker’s Algorithm (Dijkstra, Haberman)

• Have every process declare its maximum resource requirements (i.e.
maximum number of units required for each resource).

• Whenever process requests resources, determine (in the request()
routine) if granting the request at this time leaves system in safe state.
If not, delay the request.

• Data structures:
int available[m];/* units of Rj available */

int maxi[m]; /* maximum resource requirements of Pi */

int alloci[m]; /*current allocation of resources to Pi*/

int needi[m]; /* needi[j] = maxi[j] - alloci[j] */

• Partial relation “<=“ on vectors:
x in Nm, y in Nm : x <= y iff for all i = 0,...,m-1 : x[i] <= y[i]

<1,1,1> <= <2,5,7>
<1,1,1> NOT <= <2,0,7>

CPSC-410/611 Operating Systems Deadlocks

11

The Banker’s Algorithm

Pi:
void request(int req_vec[]) {

 if (req_vec >= needi)

 raise_hell(); /* exceeded promised maximum */

 if (req_vec >= available)

 wait(); /* resources not available */

 available -= req_vec;

 alloci += req_vec;

 needi -= req_vec;

 if (! state_is_safe()) {

 available += req_vec; /* restore old state */

 alloci -= req_vec;

 needi += req_vec;

 wait(); /* wait until state would be safe */

 }

}

Determine Safety of State

int state_is_safe() {

 int temp_av[m] = available;

 bool finish[n] = (FALSE,...,FALSE);

 int i;

 while (finish!=(TRUE,...TRUE)){

 /* Find Pi such that finish[i] = FALSE and */

 /* needi <= temp_av. */

 for (i=0; (i<n)&&(finish[i]||(needi > temp_av); i++) {

 if (i == n) {

 return FALSE;

 }

 else {

 temp_av += alloci;

 finish[i] = TRUE;

 }

 }

 }

 return TRUE;

}

CPSC-410/611 Operating Systems Deadlocks

12

Banker’s Algorithm: Example

 R1(7) R2(7) R3(7)

max: P1 5 3 1

 P2 3 2 3

 P3 2 3 1

 P4 5 0 3

alloc:P1 3 3 1

 P2 2 2 2

 P3 0 1 1

 P4 0 0 1

need: P1 2 0 0

 P2 1 0 1

 P3 2 2 0

 P4 5 0 2

available:2 1 2

Four examples:

P2: request([1,1,1])

P2: request([1,0,1])

P4: request([5,0,0])

P3: request([2,0,0])

Single-Unit Resources: Claim Graphs

• Claim graph: Variation of resource allocation graph (RAG).

– claim edge (Pi, Rj) : Process Pi may request resource Rj

sometimes in the future.

• Whenever new process starts, we add its claim edges to the
RAG.

• Whenever process request resources, test if acquisition would
generate a cycle in the RAG (causing an unsafe state).

RjPi RjPi RjPi RjPi

request acquisition release

R1

P1

R2

P2

R1

P1

R2

P2

P2: request(R2)

CPSC-410/611 Operating Systems Deadlocks

13

Deadlock Detection & Recovery

• Deadlock prevention and avoidance are cautious approaches.
May overly reduce resource utilization.

• Alternative: Periodically analyze RAG, detect deadlocks, and
initiate recovery.

• Advantages:

– A priori knowledge of resource requirements not needed.

– Higher resource utilization

• Disadvantages:

– Cost of recovery

Multiple-Unit Resources
int available[m]; /* resources available */

int alloci[m]; /* resources allocated to Pi */

int rec_veci[m]; /* currently requested by Pi */

int temp_av[m] = available;

bool finish[n] = (FALSE, ..., FALSE);

bool found = TRUE;

for (i=0, i<n, i++)

 if (rec_veci == (0,...,0)) finish[i] = TRUE;

while(found) {

 found = FALSE;

 for(i=0, (i<n) && (!found), i++) {

 if ((!finish[i]) && (req_veci < temp_av))

 /* assume Pi runs to completion */

 {temp_av += alloci; finish[i]=TRUE; found=TRUE;}

 }

}

/* for any finish[i] == FALSE, Pi is deadlocked */

CPSC-410/611 Operating Systems Deadlocks

14

Deadlock Detection: Example

 R1(7) R2(7) R3(7)

alloc:P1 2 3 0

 P2 2 2 2

 P3 3 1 1

 P4 0 0 4

req: P1 0 0 0

 P2 1 0 1

 P3 2 0 3

 P4 5 0 0

available:0 1 0

Single-Unit Resources: Wait-For Graphs

• Wait-For Graph: “RAG without resource nodes”

• Example:

• Cycle in wait-for graph is necessary and sufficient
condition for deadlock.

R1

P1

P2

P3

P5

P4

R3

R5R4

R2

R6

P1

P2

P3

P5

P4

resource allocation graph wait-for graph

CPSC-410/611 Operating Systems Deadlocks

15

Cycle Detection in Wait-For Graphs

/* wi : out-degree of node i */

S := {i | node i is a sink};

for all i in S do begin

 for all j such that (j,i) is edge do begin

 delete_edge(j,i);

 wj := wj-1;

 if wj = 0 then S := S + {j};

 end;

end;

if (S <> N) then cycle_exists;

Cycle Detection in Directed Graphs (Pseudocode)

How to Use Deadlock Detection:

• How frequently to invoke deadlock detection:

– after every request vs. at longer intervals

– indication-triggered (e.g. drop in CPU utilization)

• Recovery from deadlock:

– Termination of deadlocked processes.

– Preemption of resources (may require process rollback)

– Policies for termination/rollback.

CPSC-410/611 Operating Systems Deadlocks

16

The Engineer’s Approach

Q: Why not ignore deadlocks altogether?

• The Ostrich Algorithm (Tanenbaum): pretend there is no problem

• Deadlocks in Unix:

– process table: size limits total number of processes

• scenario:

– process table with 100 entries.

– 10 processes that fork off 12 subprocesses each.

– i-node table: size limits the number of open files.

– etc.

• Most users prefer an occasional deadlock to a rule that unduly
restricts them.

