CPSC 410 /611 : Operating Systems

Memory Management

® Address binding

- Linking, loading

- Logical vs. physical address space
® Memory partitioning
® Paging

® Segmentation

® Reading: Silberschatz, Chapter 8

Memory Management

e Observations:
- Process needs at least CPU and memory to run.
- CPU context switching is relatively cheap.
- Swapping memory in/out from/to disk is expensive.

® Need to subdivide memory to accommodate multiple processes!

e How do we manage this memory?

CPSC 410/611:

Operating Systems

Requirements for Memory Management

Relocation
- We do not know a priori where memory of process will reside.
Protection

- No uncontrolled references to memory locations of other
processes.

- Memory references must be checked at run-time.
Sharing

- Data portions and program text portions.
Logical organization

- Take advantage of semantics of use.

- Dal’rc)l portions (read/write) vs. program text portions (read

only).

Memory hierarchy

- RAM vs. secondary storage

- Swapping

Preparing a Program for Execution

dynamically
loaded system
system library | ibr'ary¥

51 OI \
) 0, L Ltemp Lohys
2 linker loader
S; O, S, Source Program
. O;: Object Module
compiler Liemp: Load Module

Lohys' Memory Image

compiler: translates symbolic instructions, operands, and addresses
intfo numerical values.

linker: resolves external references; i.e. operands or branch
addresses referring to data or instructions within some other
module

loader: brings program into main memory.

CPSC 410/611:

Operating Systems

Address Binding

e Compile-time binding:
100

branch A | assembler | branch 150
e

Al
150
Load-time binding (static relocation): other progrms
00 100 other module 1100 other module
branch A | assembler | branch 50 linker branch 150 | loader branch 1150
e — B
A 50 150 1150
Execution-time binding (dynamic relocation): other progrms
00 100 other module 1100 other module
branch A | assembler | branch 50 linker branch 150 | loader branch 150 -
e — B
A 50 150 1150

1150

Dynamic Loading, Dynamic Linking

e Dynamic Loading:
- load routine into memory only when it is needed
- routines kept on disk in relocatable format
e Load-time Linking:
- postpone linking until load time.
e Dynamic Linking:
- postpone linking until execution time.

call x

X ctub lgad routine . .
link x to location of routine

- Problem: Need help from OS!

CPSC 410/611:

Operating Systems

Logical vs. Physical Address Space

e Logical address: address as seen by the process (i.e. as seen by the CPU).
e Physical address: address as seen by the memory.

e Example:

load time:
00 100 1100

branch A| assembler| branch 50 | linker branch 150/ loader | branch 1150
 — Em— E—

A 50 150 1150 1
|

logical = physical

execution time:
00 100 1100

branch A| assembler| branch 50 | linker branch 150| loader | branch 150+» MMU
—_— E— —_—

A ... 5 150 1150

A [
physical T logical T

Logical vs. Physical Memory Space

e Logical address: address as seen by the process (i.e. as seen by the CPU).
e Physical address: address as seen by the memory.

logical address
space of process

partition table

process base size
P, 28 1000
P, 1028 3000
P 5034 250

: limit relocation i 0s

H register register !

E E physical

' : address

1 ! space of
CPU < + i

' ' process

E 'Y N/ |_:_’ 5

i

Memory Management Unit Physical Memory

CPSC 410/611:

Operating Systems

Swapping
O start
ready._sw) =Ot ready running
waiting_sw - U il waiting
jobs are on disk +— > jobs are in memory
0S
|:|‘ swap_out
D swap_in
swapping store memory

Simple Method: Fixed Partitioning

e Partition available memory into regions with fixed boundaries.

Equal-size Partitions Unequal-size Partitions
0s 0s
8MB 8MB

2MB
8MB

4MB
8MB 8MB
sme 12MB
8MB

16MB
8MB

e Problem: Internal Fragmentation.

CPSC 410 /611 : Operating Systems

Simple Method: Dynamic Partitions

e Partitions can be of variable length and number.
e Process is allocated exactly as much memory as requested.

0s 0s

start P, start P, start Py

External Fragmentation

Job queue: P, : 100kB

Available memory: 1024kB

P, : 256kB
P, : 266kB
P, : 512kB
0
1024 start P, start P, P, leaves start P,

and P,
e Solution?

- Compaction
- Paging

CPSC 410 /611 : Operating Systems

Allocation Strategies

e General schemes for allocating variable-sized blocks of main storage in
systems without paging hardware.

e Two commands:

request mainstore (int size, char ** base_addr)

- If there is a hole large enough, allocate size units of that hole (if
there are several holes, choice which one to pick defined by
placement policy)

- If no sufficiently big hole available:
e temporarily block request

e deallocate one or more used blocks (swapping, choice defined by
replacement policy)

e Compaction

release mainstore (int size, char * base_addr)

Placement Policies

SR o first-fit: search for first hole that is big
""" enough
? / P e best-fit: search for smallest hole that is
— big enough
\ BRERE e worst-fit: search for largest hole and see
if it fits.

Which policy performs best?

CPSC 410 /611 : Operating Systems

Administration of Available Space

e List of available holes: Instead of using separate storage area for data
structure, use hole space itself.

e Alternatives: Buddy scheme, others.

false | size true [size header
4 next | prev >
size size
A
false | size true [size
reserved hole
boundary tags . ®
forward bacKward
pointers poinfers
before release() after release()

Paging

e Contiguous allocation causes (external) fragmentation.

e Solution: Partition memory blocks into smaller subblocks (pages)
and allow them to be allocated non-contiguously.

Simple partitioning: TM?T,O,'TY, Management Unit

o
I
I+
I
I

Paging:

S L ¢

logical memory
physical memory

CPSC 410/611:

Operating Systems

Basic Operations in Paging Hardware

,,,,,,,,,,,,,,,,,,,,,

——

| -
| |
|
cPu —Hmﬁ (F] d }—
| — |
| — |

i P — N

| » f }
| |
| |
| — |
|
o pagetable |

Memory Management Unit physical

memory

Internal Fragmentation in Paging

e Example:

page size 4kB

logical memory
133008

4084 bytes
wasted!

physical memory

Last frame allocated may not be completely full.
Average internal fragmentation per block is typically half frame size.

Large frames vs. small frames:

* Large frames cause more fragmentation.
+ Small frames cause more overhead (page table size, disk I/0)

CPSC 410/611:

Operating Systems

Implementation of Page Table

e Page table involved in every access to memory. Speed very important.
e Page table in registers?

- Example: 1MB logical address space, 2kB page size; needs a page
table with 512 entries!

e Page table in memory?

- Only keep a page table base register that points to location of
page table.

- Each access to memory would require two accesses to memory!
e Cache portions of page table in registers?
- Use translation lookaside buffers (TLBs): typically a few dozens
entries.
- Hit ratio: Percentage of time an entry is found.
Hit ratio must be high in order to minimize overhead.

Multilevel Paging

e Problem: Page tables can become very large!

- Example: 32-bit address space (4GB) and 4kB page size needs page table
with 2% entries!

e Solution: Page the page table itself!

page number offset
e Two-level paging: < > >
- logical address: 32 bit | | | |
page size 4kB
10 10 12

e QOperation:

pl [p2[d |
f
plI A
&

e Three-level paging (SPARC), four-level paging (68030), ...

f

10

CPSC 410/611:

Operating Systems

Segmentation

e Users think of memory in terms of segments (data, code, stack,

objects,)

e Data within a segment typically has uniform access restrictions.

Memory Management Uni

Paging: ‘ ‘
gng- o J |

physical memory

Segmentation: Memory Management Unit
il EEEE———
I J
1 ’ —’_:_>
o
VL

physical memory

Segmentation Hardware

CPU

Memory Management Unit

physical
memory

11

CPSC 410/611:

Operating Systems

Advantages of Segmentation

e Data in a segment typically semantically related
e Protection can be associated with segments
- read/write protection

- range checks for arrays
e Data/code sharing

physical
***************************** memory
e Disadvantages?

Solution: Paged Segmentation

e Example: MULTICS

segment number offset

18bit 16bit

Problem: 64kW segments -> external fragmentation!
Solution: Page the segments.

page
segment number page# offset

18bit 6bit 10bit

Problem: need 2718 segment entries in segment table
Solution: Page the segment table.

page page
POge# offser PO9EH# offser

8bit 10bit 6bit 10bit

12

