
CPSC 410 / 611 : Operating Systems

1

Memory Management

• Address binding

– Linking, loading

– Logical vs. physical address space

• Memory partitioning

• Paging

• Segmentation

• Reading: Silberschatz, Chapter 8

Memory Management

• Observations:
– Process needs at least CPU and memory to run.
– CPU context switching is relatively cheap.
– Swapping memory in/out from/to disk is expensive.

• Need to subdivide memory to accommodate multiple processes!

• How do we manage this memory?

CPSC 410 / 611 : Operating Systems

2

Requirements for Memory Management

• Relocation
– We do not know a priori where memory of process will reside.

• Protection
– No uncontrolled references to memory locations of other

processes.
– Memory references must be checked at run-time.

• Sharing
– Data portions and program text portions.

• Logical organization
– Take advantage of semantics of use.
– Data portions (read/write) vs. program text portions (read

only).
• Memory hierarchy

– RAM vs. secondary storage
– Swapping

S1 O1

Ltemp Lphys

S2

S3

O2

O3

Preparing a Program for Execution

• compiler: translates symbolic instructions, operands, and addresses
into numerical values.

• linker: resolves external references; i.e. operands or branch
addresses referring to data or instructions within some other
module

• loader: brings program into main memory.

compiler

linker loader

Si : Source Program
Oi: Object Module
Ltemp: Load Module
Lphys: Memory Image

dynamically
loaded system
librarysystem library

CPSC 410 / 611 : Operating Systems

3

Address Binding
• Compile-time binding:

• Load-time binding (static relocation):

• Execution-time binding (dynamic relocation):

branch A

A: ...

branch 150assembler

100

150

branch A

A: ...

branch 50assembler

00

50

branch 150linker

100

150

other module

branch 1150loader

1100

1150

other module

other progrms

A: ...

branch A

A: ...

branch 50assembler

00

50

branch 150linker

100

150

other module

branch 150loader

1100

1150

other module

other progrms

MMU

1150

Dynamic Loading, Dynamic Linking

• Dynamic Loading:
– load routine into memory only when it is needed
– routines kept on disk in relocatable format

• Load-time Linking:
– postpone linking until load time.

• Dynamic Linking:
– postpone linking until execution time.

– Problem: Need help from OS!

call x

stubx: load routine
link x to location of routine

CPSC 410 / 611 : Operating Systems

4

Logical vs. Physical Address Space

• Logical address: address as seen by the process (i.e. as seen by the CPU).
• Physical address: address as seen by the memory.

• Example:

branch A

A: ...

branch 50assembler

00

50

branch 150linker

100

150

branch 1150loader

1100

1150A: ...

logical = physical

branch A

A: ...

branch 50assembler

00

50

branch 150linker

100

150

branch 150loader

1100

1150

MMU

1150

physical
logical

execution time:

load time:

Logical vs. Physical Memory Space

physical
address
space of
process
Pi

process base size
P1 28 1000
P2 1028 3000
P3 5034 250

CPU < +

OSrelocation
register

limit
register

addressing error!logical address
space of process
Pi

Memory Management Unit

partition table
Physical Memory

• Logical address: address as seen by the process (i.e. as seen by the CPU).
• Physical address: address as seen by the memory.

CPSC 410 / 611 : Operating Systems

5

Swapping

waiting

running

start

waiting_sw

ready_sw ready

jobs are in memoryjobs are on disk

OS
swap_out

swap_in

swapping store memory

Simple Method: Fixed Partitioning
• Partition available memory into regions with fixed boundaries.

OS
8MB

8MB

8MB

8MB

8MB

8MB

Equal-size Partitions

OS
8MB
2MB

4MB

8MB

12MB

16MB

Unequal-size Partitions

• Problem: Internal Fragmentation.

CPSC 410 / 611 : Operating Systems

6

OS

Simple Method: Dynamic Partitions

• Partitions can be of variable length and number.
• Process is allocated exactly as much memory as requested.

0

P1 P1

P2

start P1 start P2

P1

P3

P2

start P3

OS OS OS

External Fragmentation

• Solution?
– Compaction
– Paging

Job queue: P1 : 100kB
P2 : 256kB
P3 : 256kB
P4 : 512kB

Available memory: 1024kB

0

1024

P1 P1 P1

P3

P2

P3

start P1 start P2
and P3

P2 leaves start P4

P1

P4?P3

CPSC 410 / 611 : Operating Systems

7

Allocation Strategies

• General schemes for allocating variable-sized blocks of main storage in
systems without paging hardware.

• Two commands:

request_mainstore(int size, char ** base_addr)

– If there is a hole large enough, allocate size units of that hole (if
there are several holes, choice which one to pick defined by
placement policy)

– If no sufficiently big hole available:
• temporarily block request
• deallocate one or more used blocks (swapping, choice defined by

replacement policy)
• Compaction

release_mainstore(int size, char * base_addr)

Placement Policies

• first-fit: search for first hole that is big
enough

• best-fit: search for smallest hole that is
big enough

• worst-fit: search for largest hole and see
if it fits.

?

Which policy performs best?

CPSC 410 / 611 : Operating Systems

8

Administration of Available Space
• List of available holes: Instead of using separate storage area for data

structure, use hole space itself.

• Alternatives: Buddy scheme, others.

false size

false size

size

reserved

true size

true size

size

hole

next prev

boundary tags

after release()before release()

header

forward
pointers

backward
pointers

Paging
• Contiguous allocation causes (external) fragmentation.
• Solution: Partition memory blocks into smaller subblocks (pages)

and allow them to be allocated non-contiguously.

• Simple partitioning: Memory Management Unit

logical memory

physical memory

• Paging: Memory Management Unit

logical memory
physical memory

CPSC 410 / 611 : Operating Systems

9

Basic Operations in Paging Hardware

Memory Management Unit

CPU

physical
memory

p d f d

f

p

page table

d

Internal Fragmentation in Paging

• Example:

logical memory
13300B

page size 4kB

physical memory

• Last frame allocated may not be completely full.

• Average internal fragmentation per block is typically half frame size.

• Large frames vs. small frames:

• Large frames cause more fragmentation.

• Small frames cause more overhead (page table size, disk I/O)

4084 bytes
wasted!

CPSC 410 / 611 : Operating Systems

10

Implementation of Page Table

• Page table involved in every access to memory. Speed very important.
• Page table in registers?

– Example: 1MB logical address space, 2kB page size; needs a page
table with 512 entries!

• Page table in memory?
– Only keep a page table base register that points to location of

page table.
– Each access to memory would require two accesses to memory!

• Cache portions of page table in registers?
– Use translation lookaside buffers (TLBs): typically a few dozens

entries.
– Hit ratio: Percentage of time an entry is found.

Hit ratio must be high in order to minimize overhead.

Multilevel Paging

• Problem: Page tables can become very large!
– Example: 32-bit address space (4GB) and 4kB page size needs page table

with 220 entries!
• Solution: Page the page table itself!
• Two-level paging:

– logical address: 32 bit
page size 4kB

• Operation:

• Three-level paging (SPARC), four-level paging (68030), ...

page number offset

10 10 12

p1 p2 d

f d
p1

f

p2

CPSC 410 / 611 : Operating Systems

11

Segmentation
• Users think of memory in terms of segments (data, code, stack,

objects,)
• Data within a segment typically has uniform access restrictions.

• Paging:
Memory Management Unit

logical memory
physical memory

• Segmentation: Memory Management Unit

logical memory
physical memory

Segmentation Hardware

Memory Management Unit

CPU

physical
memory

s d

s

segment table

limit base

<? +

CPSC 410 / 611 : Operating Systems

12

Advantages of Segmentation

• Data in a segment typically semantically related
• Protection can be associated with segments

– read/write protection
– range checks for arrays

• Data/code sharing

• Disadvantages?

physical
memory

s d

s
limit base

<? +

s d

s
limit base

<? +

Solution: Paged Segmentation
• Example: MULTICS

segment number offset

18bit 16bit

Problem: 64kW segments -> external fragmentation!
Solution: Page the segments.

segment number

18bit 10bit

page#
page
offset

6bit

Problem: need 2^18 segment entries in segment table
Solution: Page the segment table.

8bit 10bit

page#
page
offset

6bit10bit

page#
page
offset

