CPSC 410/611:

Operating Systems

Virtual Memory

e Virtual Memory
® Reading: Silbershatz, Chapter 9

e Virtual Memory, MIPS-Style

Virtual Memory

Overview / Motivation
Simple Approach: Overlays
Locality of Reference
Demand Paging
Policies

- Placement

- Replacement
- Allocation
e Case Studies: Unix SystemV

® Reading: Silberschatz, Chapter 9

CPSC 410 /611 : Operating Systems

Virtual Memory

e Allow execution of processes that may not be completely in
memory.

- 1990: Run dBaseIV on MS/DOS without expanded memory.
- 1995: Run X and Netscape on a Sun with 12MB memory.
- 2004: Run RiseOfNations on Windows box with 128MB memory.

e Benefits:

- Program size not constrained by amount of physical memory
available.

- More programs can be run simultaneously
- Less need for swapping

Virtual Memory at its Simplest: Overlays

e Keep in memory only those instructions
common and data that are needed at any given
data time.
common e Special relocation and linking needed to
routines construct overlays.
overlay e Don’t need special support from OS.
driver e Require proper design of overlay
structure.
/V A V\
overlay overlay overlay
1 2 3

CPSC 410/611:

Operating Systems

Demand Paging

“Lazy Swapper”: only swap in pages that are needed.

Whenever CPU tries to access a page that is not swapped in, a page
fault occurs.

0
1
2 i
3
0| A o 40 A
1 B 1 4 \‘/ 5 l:’ l:’ l:’ l:’
2| ¢ g 10 Jv 6 D D
= = DB)(EF
8
S i o G 0000
6| 6 7 i 10 ¢
7h age u ~
logical table 12 backing store
memory physical memory
Mechanics of a Page Fault
page is on backing store
©)
0s 2/
trap
reference
O
CPU z [i |:|
restart L
instructig,
page table
= free
O frame

update page table

physical memory

load page

CPSC 410 /611 : Operating Systems

Locality of Reference

e Page faults are expensive!

e Thrashing: Process spends most of the time paging in
and out instead of executing code.

® Most programs display a pattern of behavior called the
principle of locality of reference.

—{Locality of Reference

A program that references a location n at some
point in fime is likely to reference the same
location n and locations in the immediate
vicinity of nin the near future.

Memory Access Trace

038 rumibes

CPSC 410/611:

Operating Systems

Architectural Considerations

® Must be able to restart any instruction after a page
fault.

® eg.
ADD A,B TO C

e What about operations that modify several locations in
memory?

- e.g. block copy operations?
e What about operations with side effects?

- e.g. PDP-11, 80x86 auto-decrement, auto-increment
operations?

- Add mechanism for OS to “undo” instructions.

Performance of Demand Paging

e Effective Memory Access time ema:
ema = (1-p) * ma + p * "page fault time”
® where
- p = probability of a page fault
- ma = memory access time
e Operations during Page Fault:

page is on backing store

0s)
trap 1. service page fault
referenck inferrupt
cpu | > K (] 2. swap in page
" restart 47 3. restart process

instrudtionyage table

free
frame

update page tabJe | load page

CPSC 410 /611 : Operating Systems

OS Policies for Virtual Memory

e Fetch Policy
- How/when to get pages into physical memory.
- demand paging vs. prepaging.
e Placement Policy
- Where in physical memory to put pages.
- Only relevant in NUMA machines.
e Replacement Policy
- Physical memory is full. Which frame to page out?
e Resident Set Management Policy
- How many frames to allocate to process?
- Replace someone elses frame?
e Cleaning Policy
- When to write a modified page to disk.
e Load Control

Configuring the Win2k Memory Manager

e Registry Values that Affect the Memory Manager:

ClearPageFileAtShutdown
DisablePagingExecutive
IoPageLockLimit
LargePageMinimum
LargeSystemCache
NonPagedPoolQuota
NonPagedPoolSize
PagedPoolQuota
PagedPoolSize
SystemPages

CPSC 410/611:

Operating Systems

Page Replacement

e Virtual memory allows higher degrees of multiprogramming by
over-allocating memory.

| 256kB | | 256kB | | 256kB | | 256kB | | 256kB |
| 1024kB |
Example:
o X o7 Ty >
4
2[M 2 T oN
3[N Lo v 12 E
of A o3 T 3 A
1| B 1 | 4 L
2l ¢ 271 |v 5/ D e
3o 35 [v

Mechanics of Page Replacement

e Invoked whenever no free frame can be found.

swap
out
i victim ©
- invalidate page
f v/i @ entry for @
victim page Ly l:,
victim
\
— [
- - update
nil/fJi/v @ entry for @ /s'/l:/;/e,w
new page page _/
page table

backing store
physical memory

* Problem: Need two page transfers!
Solution: Dirty bit.

CPSC 410/611:

Operating Systems

Page Replacement Algorithms

e Objective: Minimize page fault rate.
e Why bother?

e Example

for (int i=0;
X * a;

a =

}

i<10;

i++) {

e Evaluation: Sequence of memory references: reference string.

FIFO Page Replacement

enter frame in
FIFO queue

.....

FIFO queue

N O O O

® [-
f v/i

— nil/f |i/v

page table

physical memory

swap
out
invalidate victim
@ entry for @ page
victim page _
victim
<\
update
@ entry for @ f:/ ;’ZW
new page page

@ select

victim

backing store

CPSC 410 /611 : Operating Systems

FIFO Page Replacement (cont.)

e Example:
time 11234567]8]9]10
reference clalalv]elv]lalbv]c]a
string

+ Advantage: simplicity
Disadvantage: Assumes that pages residing the longest in
memory are the least likely to be referenced in the future
(does not exploit principle of locality).

Optimal Replacement Algorithm

e Algorithm with lowest page fault rate of all algorithms:

Replace that page which will not be used
for the longest period of time.

e Example:
time 1234|516 7]8]9]10
reference clald|blelblalblclad
string

frames Ja|la||a|la] |a||a| |a| [a] |a| a} d]
(] La] La] [a] [a] [e] [e] [e] [e] [e] L]
! !

CPSC 410 /611 : Operating Systems

Approximation to Optimal: LRU

Least Recently Used: replace the page that has not been accessed for

longest period of time.
Example:

time

1]2ls]lalslelz]s]o]io0
reference claldlv]lelvlalv]cla
string

fames | fa|la]a]|a][a] Ja| |a| |a
! !

!

LRU: Implementation

Need to keep chronological history of page references; need to be

reordered upon each reference.

Stack:

stack

Capacitors: Associate a capacitor with each memory frame. Capacitor is charged
with every reference to the frame. The subsequent exponential decay of the

charge can be directly converted into a time interval.
Aging registers: Associate aging register of n bits (R, ...

, Ry) with each frame

in memory. Set R, to 1 for each reference. Periodically shift registers to the

right.

10

CPSC 410 /611 : Operating Systems

Approximation to LRU: Clock Algorithm

e Associate a use_bit with every frame in memory.
- Upon each reference, set use_bit to 1.
- Keep a pointer to first “victim candidate” page.

- To select victim: If current frame's use_bit is O, select
frame and increment pointer. Otherwise delete use_bit and
increment pointer.

time 4 5 6 7 8 9 (|10
reference

. b b b d
string
frames

Improvement on Clock Algorithm
(Second Chance Algorithm)

e Consider read/write activity of page: dirty_bit (or modify_bit)

e Algorithm same as clock algorithm, except that we scan for
frame with both use_bit and dirty_bit equal to O.

e Each time the pointer advances, the use_bit and dirty_bit are
updated as follows:

ud ud ud ud
before| 11 10 01 00

after 01 00 0 0* (select

e Called Second Chance because a frame that has been written to
is not removed until two full scans of the list later.

e Note: Stallings describes a slightly different algorithm!

11

CPSC 410 /611 : Operating Systems

Improved Clock (cont)

e Example:

time 1 2 3 4 5 6 7 8

10

reference
string

frames |a/10| |a/10| |a/11| |a/11] [a/11] [a/00*| |a/00%| |a/11

a/ll

a/ll

b/10| |b/10| |b/10| |b/10]| [b/11%| [b/00%| |b/10%| [b/10*

b/10*

b/10*

c/10 [c/10| |c/10] |c/10| |c/10| |e/10]| |e/10] |e/10

e/10

e/10

d/10| |d/10| |d/10| {d/10]| |d/10| |d/00] |d/00| |d/00

d/00

c/10

The Macintosh VM Scheme (see Stallings)

e Uses use_bit and modify_bit.

and modify_bit cleared.

bypassed frame.

Step 2.

e Step 1: Scan the frame buffer. Select first frame with use_bit

e Step 2: If Step 1 fails, scan frame buffer for frame with use_bit
cleared and modify_bit set. During scan, clear use_bit on each

e Now all use_bit’s are cleared. Repeat Step 1 and, if necessary,

12

CPSC 410 /611 : Operating Systems

The Macintosh Scheme (cont)

e Example:
time 1 2 3 4 5 6 7 8 9 |10
ref_erence ¢ av d bv e b av b ¢ d
string

frames |a/10([a/10] [a/11| [a/11] [a/11] |a/01] |a/01| |a/11] |a/11| |a/11

b/10| [b/10| [b/10| |b/10| [b/11| |b/O1| |b/11| [b/11| [b/11]| |b/11

c/10(|c/10| |c/10| |c/10]| |c/10| |e/10| |e/10]| |e/10| |e/10| |e/10

d/10| (d/10]| |d/10| |d/10| (d/10]| |d/00| |d/00] |d/00| |d/00] |c/10

Resident Set Management

e Local vs. Global replacement policy:

- The page to be replaced is selected from the
resident set of pages of the faulting process. (local)

- The page to be replaced may belong to any of the
processes in memory.

e Each program requires a certain minimum set of pages
to be resident in memory to run efficiently.

e The size of this set changes dynamically as a program
executes.

e This leads to algorithms that attempt to maintain an
optimal resident set for each active program. (Page
replacement with variable number of frames.)

13

CPSC 410/611:

Operating Systems

The Working Set Model

e Working Set W(t,A4): set of pages referenced by process during
time interval (-4, 1)

Wt 1) =1 1< [W(t, Al < min(A,N)

e The storage management strategy follows two rules:

- At each reference, the current working set is determined and
only those pages belonging to the working set are retained in
memory.

- A program may run only if its entire current working set is in
memory.

e Underlying Assumption: cardinality of working set remains constant
over small time intervals.

Working Set Model (cont.)

e Example: (A = 4)

time 1123|4567 18]9]10
Z‘:ﬁgnce re%jd[a clec|d]|b|lcle]clefjal]d
working 1T Tal [al [al [a] [J] VT 1T 1]][] [a
s sinisicioiciciiinin
| [e] [e] [e] [e] [e] [e] [c] [c] [c]
d| [d| [a] [a] [a] [a] [a] [a] | || || |[d]
Ll Ll Ted [ed L L L Lo Le] Led [e] [e]
! ! ! ! !

Problems:

Difficulty in keeping track of working set.
- Estimation of appropriate window size A.

14

CPSC 410 /611 : Operating Systems

Improve Paging Performance: Page Buffering

e Victim frames are not overwritten directly, but are
removed from page table of process, and put into:
- free frame list (clean frames)
- modified frame list (modified frames)

e Victims are picked from the free frame list in FIFO
order.

e If referenced page is in free or modified list, simply
reclaim it.

e Periodically (or when running out of free frames) write

modified frame list to disk.

Page Buffering and Page Stealer

e Kernel process (e.g. pageout in Solaris) that swaps out memory frames
that are no longer part of a working set of a process.

e Periodically increments age field in valid pages.

page referenced ready to
l swap out
page in 1 2 3 Y n
memory
“ age page ... hot referenced
page out
swap in of memory swap out

Page stealer wakes up when available free memory is below /ow-water
mark. Swaps out frames until available free memory exceeds high-
water mark.

Page stealer collects frames to swap and swaps them out in a single
run. Until then, frames still available for reference.

CPSC 410/611:

Operating Systems

Implementation of Demand Paging
in UNIX SVR4

frame address |age |cp/wrt[mod |ref] val [prot

<«— page tableentry ——

swap type (swapi file,
dev blocknum {11 6. demand fill)

<«— disk block descriptor ———

page state ref count logical device block number pfdata pointer

A

frame table entry

v

Demand Paging on
Less-Sophisticated Hardware

e Demand paging most efficient if hardware sets the reference and dirty
bits and causes a protection fault when a process writes a page whose
copy._on_write bit is set.

e Can duplicate valid bit by a software-valid bit and have the kernel turn
off the valid bit. The other bits can then be simulated in software.

e Example: Reference Bit:

- If process references a page, it incurs a page fault because valid bit
is off. Page fault handler then checks software-valid bit.

- If set, Kernel knows that page is really valid and can set software-
reference bit.

Hardware Software Software Hardware Software Software
Valid Valid Reference Valid Valid Reference
| Off | On | Off | | On | On | On |
before referencing page after referencing page

16

CPSC 410 /611 : Operating Systems

fork () System Call in Paging Systems

e Naive: fork () makes a physical copy of parent address

space. However, fork () mostly followed by an exec ()
call, which overwrites the address space.

e System V: Use copy_on_write bit:

- During fork () system call, all copy_on_write bits of
pages of process are turned on. If either process writes to
the page, incurs protection fault, and, in handling the fault,
kernel makes a new copy of the page for the faulting
process.

e BSD: Offers vfork () system call, which does not copy
address space. Tricky! (May corrupt process memory.)

Virtual Memory

e Virtual Memory, MIPS-Style

17

CPSC 410 /611 : Operating Systems

Virtual Memory - MIPS Style

Process no. Program (virtual) address

Address

ASID VPN e
within page

TLB)/

Page table
(in memory)

ASID VPN/Mask PFN Flags [« PFN Flags

refill when

\ necessary

Physical address \

A

Address

A within frame

Memory Translation -- VAX style

e Split virtual address

e Concatenate more-significant bits with Process ASID to
form page address.

® Look in the TLB to see if we find translation entry for
page.
e If YES, take high-order physical address bits.

- (Extra bits stored with PFN control access to
frame.)

e If NO, system must locate page entry in main-memory-
resident page table, load it into TLB, and start again.

18

CPSC 410 /611 : Operating Systems

Memory Translation -- MIPS Style

In principle: Do the same as VAX, but with as little
hardware as possible.

Apart from register with ASID, the MMU is just a TLB.

The rest is all implemented in software!

When TLB cannot translate an address, a special
exception (TLB refill) is raised.

Question: This is easy in principle, but tricky to do
efficiently.

MIPS TLB Entry Fields

input output

Flags

VPN ASID | G PFN N DV

VPN: higher order bits of virtual address
ASID: identifies the address space
G: if set, disables the matching with the ASID

PFN: Physical frame number

N: O - cacheable, 1 - noncacheable

D: write-control bit (set to 1 if writeable)
V: valid bit

19

CPSC 410 /611 : Operating Systems

MIPS Translation Process

® CPU generates a program (virtual) address on a instruction fetch,
a load, or a store.

e The 12 low-end bits are separated off.

e TLB matches key:

- Matching entry is selected, and PFN is glued to low-order bits
of the program address.

- Valid?: The V and D bits are checked. If problem, raise
exception, and set BadVAddr register with offending program
address.

- Cached?: IF C bit is set, the CPU looks in the cache for a copy

of the physical location’s data. If C bit is cleared, it neither
looks in nor refills the cache.

TLB Refill Exception

e Figure out if this was a correct translation. If not, trap to
handling of address errors.

e If translation correct, construct TLB entry.
e If TLB already full, select an entry to discard.

e Write the new entry info the TLB.

20

