
CPSC 410 / 611 : Operating Systems

1

Virtual Memory

• Virtual Memory

• Reading: Silbershatz, Chapter 9

• Virtual Memory, MIPS-Style

Virtual Memory

• Overview / Motivation
• Simple Approach: Overlays
• Locality of Reference
• Demand Paging
• Policies

– Placement
– Replacement
– Allocation

• Case Studies: Unix SystemV

• Reading: Silberschatz, Chapter 9

CPSC 410 / 611 : Operating Systems

2

Virtual Memory

• Allow execution of processes that may not be completely in
memory.
– 1990: Run dBaseIV on MS/DOS without expanded memory.
– 1995: Run X and Netscape on a Sun with 12MB memory.
– 2004: Run RiseOfNations on Windows box with 128MB memory.

• Benefits:
– Program size not constrained by amount of physical memory

available.
– More programs can be run simultaneously
– Less need for swapping

overlay
driver

Virtual Memory at its Simplest: Overlays

• Keep in memory only those instructions
and data that are needed at any given
time.

• Special relocation and linking needed to
construct overlays.

• Don’t need special support from OS.
• Require proper design of overlay

structure.

common
data

common
routines

overlay
1

overlay
2

overlay
3

CPSC 410 / 611 : Operating Systems

3

Demand Paging
• “Lazy Swapper”: only swap in pages that are needed.
• Whenever CPU tries to access a page that is not swapped in, a page

fault occurs.

A

B

C

D

E

F

G

0

1

2

3

4

5

6

H7

logical
memory

4 v0

i1

10 v2

i3

i4

8 v5

i6

i7

page
table

1

6

7

2

3

A4

5

0

F8

9

C10

11

12

physical memory

A B

C D E F

backing store

Mechanics of a Page Fault

CPU i

page table

OS

free
frame

reference

restart
instruction

trap

page is on backing store

load page

physical memory

update page table

1

2

3

4

5

6

CPSC 410 / 611 : Operating Systems

4

Locality of Reference

• Page faults are expensive!
• Thrashing: Process spends most of the time paging in

and out instead of executing code.
• Most programs display a pattern of behavior called the

principle of locality of reference.

A program that references a location n at some
point in time is likely to reference the same

location n and locations in the immediate
vicinity of n in the near future.

Locality of Reference

Memory Access Trace

CPSC 410 / 611 : Operating Systems

5

Architectural Considerations

• Must be able to restart any instruction after a page
fault.

• e.g.
ADD A,B TO C

• What about operations that modify several locations in
memory?
– e.g. block copy operations?

• What about operations with side effects?
– e.g. PDP-11, 80x86 auto-decrement, auto-increment

operations?
– Add mechanism for OS to “undo” instructions.

Performance of Demand Paging
• Effective Memory Access time ema:

ema = (1-p) * ma + p * “page fault time”
• where

– p = probability of a page fault
– ma = memory access time

• Operations during Page Fault:

CPU i

page table

OS

free
frame

reference

restart
instruction

trap

page is on backing store

load pageupdate page table

1. service page fault
interrupt

2. swap in page

3. restart process

CPSC 410 / 611 : Operating Systems

6

OS Policies for Virtual Memory

• Fetch Policy
– How/when to get pages into physical memory.
– demand paging vs. prepaging.

• Placement Policy
– Where in physical memory to put pages.
– Only relevant in NUMA machines.

• Replacement Policy
– Physical memory is full. Which frame to page out?

• Resident Set Management Policy
– How many frames to allocate to process?
– Replace someone elses frame?

• Cleaning Policy
– When to write a modified page to disk.

• Load Control

Configuring the Win2k Memory Manager

• Registry Values that Affect the Memory Manager:

ClearPageFileAtShutdown

DisablePagingExecutive

IoPageLockLimit

LargePageMinimum

LargeSystemCache

NonPagedPoolQuota

NonPagedPoolSize

PagedPoolQuota

PagedPoolSize

SystemPages

CPSC 410 / 611 : Operating Systems

7

Page Replacement
• Virtual memory allows higher degrees of multiprogramming by

over-allocating memory.

• Example:

1024kB

256kB 256kB 256kB 256kB 256kB

K

L

M

N

0

1

2

3

2 v0

4 v1

i2

0 v3

K2

A3

N0

C1

L4

D5

M

B
A

B

C

D

0

1

2

3

3 v0

i1

1 v2

5 v3

Mechanics of Page Replacement

• Invoked whenever no free frame can be found.

• Problem: Need two page transfers!

Solution: Dirty bit.

f v/i

nil/f i/v

victim

page table

physical memory

backing store

2

4

1

3

swap
out
victim
page

swap
in new
page

invalidate
entry for
victim page

update
entry for
new page

CPSC 410 / 611 : Operating Systems

8

Page Replacement Algorithms

• Objective: Minimize page fault rate.
• Why bother?

• Example

for(int i=0; i<10; i++) {

 a = x * a;

}

• Evaluation: Sequence of memory references: reference string.

a

x

i

FIFO Page Replacement

f v/i

nil/f i/v

victim

page table

physical memory

backing store

3

5

2

4

swap
out
victim
page

swap
in new
page

invalidate
entry for
victim page

update
entry for
new page

FIFO queue
select
victim

1
6

enter frame in
FIFO queue

CPSC 410 / 611 : Operating Systems

9

FIFO Page Replacement (cont.)

• Example:

time

reference

string

frames a

b

c

d

1

c

2

a

3

d

4

b

a

b

c

d

5

e

e

b

c

d

6

b

e

b

c

d

7

a

e

a

c

d

8

b

e

a

b

d

9

c

e

a

b

c

10

d

d

a

b

c

a

b

c

d

a

b

c

d

a

b

c

d

! ! ! ! !

• Advantage: simplicity

• Disadvantage: Assumes that pages residing the longest in
memory are the least likely to be referenced in the future
(does not exploit principle of locality).

• Algorithm with lowest page fault rate of all algorithms:

• Example:

Replace that page which will not be used
for the longest period of time.

Optimal Replacement Algorithm

time

reference

string

frames a

b

c

d

1

c

2

a

3

d

4

b

a

b

c

d

5

e

a

b

c

e

6

b

a

b

c

e

7

a

a

b

c

e

8

b

a

b

c

e

9

c

a

b

c

e

10

d

d

b

c

e

a

b

c

d

a

b

c

d

a

b

c

d

! !

CPSC 410 / 611 : Operating Systems

10

Approximation to Optimal: LRU

• Least Recently Used: replace the page that has not been accessed for
longest period of time.

• Example:

time

reference

string

frames a

b

c

d

1

c

2

a

3

d

4

b

a

b

c

d

5

e

a

b

e

d

6

b

a

b

e

d

7

a

a

b

e

d

8

b

a

b

e

d

9

c

a

b

e

c

10

d

a

b

d

c

a

b

c

d

a

b

c

d

a

b

c

d

! !!

LRU: Implementation

• Need to keep chronological history of page references; need to be
reordered upon each reference.

• Stack:

• Capacitors: Associate a capacitor with each memory frame. Capacitor is charged
with every reference to the frame. The subsequent exponential decay of the
charge can be directly converted into a time interval.

• Aging registers: Associate aging register of n bits (Rn-1, ..., R0) with each frame
in memory. Set Rn-1 to 1 for each reference. Periodically shift registers to the
right.

stack ?

?

?

?

b

d

a

c

e

b

d

a

b

e

d

a

a

b

e

d

b

a

e

d

c

b

a

e

d

c

b

a

c

?

?

?

a

c

?

?

d

a

c

?

CPSC 410 / 611 : Operating Systems

11

Approximation to LRU: Clock Algorithm

• Associate a use_bit with every frame in memory.
– Upon each reference, set use_bit to 1.
– Keep a pointer to first “victim candidate” page.
– To select victim: If current frame’s use_bit is 0, select

frame and increment pointer. Otherwise delete use_bit and
increment pointer.

time

reference

string

frames a/1

b/1

c/1

d/1

1

c

2

a

3

d

4

b

5

e

6

b

7

a

8

b

9

c

10

d

! !!

a/1

b/1

c/1

d/1

a/1

b/1

c/1

d/1

a/1

b/1

c/1

d/1

a/1

b/1

c/1

d/1

e/1

b/0

c/0

d/0

e/1

b/1

c/0

d/0

e/1

b/0

a/1

d/0

e/1

b/1

a/1

d/0

e/1

b/1

a/1

c/1

d/1

b/0

a/0

c/0

!

Improvement on Clock Algorithm
(Second Chance Algorithm)

• Consider read/write activity of page: dirty_bit (or modify_bit)
• Algorithm same as clock algorithm, except that we scan for

frame with both use_bit and dirty_bit equal to 0.
• Each time the pointer advances, the use_bit and dirty_bit are

updated as follows:

• Called Second Chance because a frame that has been written to
is not removed until two full scans of the list later.

• Note: Stallings describes a slightly different algorithm!

before 1 1 1 0 0 1 0 0

after 0 1 0 0 0 0* (select)

u d u d u d u d

CPSC 410 / 611 : Operating Systems

12

Improved Clock (cont)

• Example:

time

reference

string

frames a/10

b/10

c/10

d/10

1

c

2

aw

3

d

4

bw

5

e

6

b

7

aw

8

b

9

c

10

d

a/10

b/10

c/10

d/10

a/11

b/10

c/10

d/10

a/11

b/10

c/10

d/10

a/11

b/11*

c/10

d/10

a/00*

b/00*

e/10

d/00

a/00*

b/10*

e/10

d/00

a/11

b/10*

e/10

d/00

a/11

b/10*

e/10

d/00

a/11

b/10*

e/10

c/10

! ! !

The Macintosh VM Scheme (see Stallings)

• Uses use_bit and modify_bit.

• Step 1: Scan the frame buffer. Select first frame with use_bit
and modify_bit cleared.

• Step 2: If Step 1 fails, scan frame buffer for frame with use_bit
cleared and modify_bit set. During scan, clear use_bit on each
bypassed frame.

• Now all use_bit’s are cleared. Repeat Step 1 and, if necessary,
Step 2.

CPSC 410 / 611 : Operating Systems

13

The Macintosh Scheme (cont)

• Example:

time

reference

string

frames a/10

b/10

c/10

d/10

1

c

2

aw

3

d

4

bw

5

e

6

b

7

aw

8

b

9

c

10

d

a/10

b/10

c/10

d/10

a/11

b/10

c/10

d/10

a/11

b/10

c/10

d/10

a/11

b/11

c/10

d/10

a/01

b/01

e/10

d/00

a/01

b/11

e/10

d/00

a/11

b/11

e/10

d/00

a/11

b/11

e/10

d/00

a/11

b/11

e/10

c/10

! ! !

Resident Set Management

• Local vs. Global replacement policy:
– The page to be replaced is selected from the

resident set of pages of the faulting process. (local)
– The page to be replaced may belong to any of the

processes in memory.
• Each program requires a certain minimum set of pages

to be resident in memory to run efficiently.
• The size of this set changes dynamically as a program

executes.
• This leads to algorithms that attempt to maintain an

optimal resident set for each active program. (Page
replacement with variable number of frames.)

CPSC 410 / 611 : Operating Systems

14

The Working Set Model

• Working Set W(t,!) : set of pages referenced by process during
time interval (t-!, t)

• The storage management strategy follows two rules:
– At each reference, the current working set is determined and

only those pages belonging to the working set are retained in
memory.

– A program may run only if its entire current working set is in
memory.

• Underlying Assumption: cardinality of working set remains constant
over small time intervals.

Working Set Model (cont.)
• Example: (! = 4)

time

reference

string

working

set

1

c

2

c

3

d

4

b

5

c

6

e

7

c

8

e

9

a

10

d

• Problems:
• Difficulty in keeping track of working set.

• Estimation of appropriate window size !.

ade

e

d

e

a

d

e

a

c

d

a

c

d

a

c

d

b

c

d

b

c

d

b

c

d

e

b

c

e

c

e

a

c

e

a

c

d

ee

! ! ! ! !

CPSC 410 / 611 : Operating Systems

15

Improve Paging Performance: Page Buffering

• Victim frames are not overwritten directly, but are
removed from page table of process, and put into:
– free frame list (clean frames)
– modified frame list (modified frames)

• Victims are picked from the free frame list in FIFO
order.

• If referenced page is in free or modified list, simply
reclaim it.

• Periodically (or when running out of free frames) write
modified frame list to disk.

Page Buffering and Page Stealer

• Kernel process (e.g. pageout in Solaris) that swaps out memory frames
that are no longer part of a working set of a process.

• Periodically increments age field in valid pages.

page out
of memory

1 2 3 4page in
memory

n

• Page stealer wakes up when available free memory is below low-water
mark. Swaps out frames until available free memory exceeds high-
water mark.

• Page stealer collects frames to swap and swaps them out in a single
run. Until then, frames still available for reference.

page referenced

age page ... not referenced

ready to
swap out

swap outswap in

CPSC 410 / 611 : Operating Systems

16

Implementation of Demand Paging
in UNIX SVR4

frame address age cp/wrt mod ref val prot

page table entry

swap

dev
block num

type (swap,file,

fill 0, demand fill)

disk block descriptor

page state ref count logical device

frame table entry

block number pfdata pointer

Demand Paging on
Less-Sophisticated Hardware

• Demand paging most efficient if hardware sets the reference and dirty
bits and causes a protection fault when a process writes a page whose
copy_on_write bit is set.

• Can duplicate valid bit by a software-valid bit and have the kernel turn
off the valid bit. The other bits can then be simulated in software.

• Example: Reference Bit:
– If process references a page, it incurs a page fault because valid bit

is off. Page fault handler then checks software-valid bit.
– If set, kernel knows that page is really valid and can set software-

reference bit.

Off

Hardware
Valid

On

Software
Valid

Off

Software
Reference

On

Hardware
Valid

On

Software
Valid

On

Software
Reference

before referencing page after referencing page

CPSC 410 / 611 : Operating Systems

17

fork() System Call in Paging Systems

• Naive: fork() makes a physical copy of parent address
space. However, fork() mostly followed by an exec()
call, which overwrites the address space.

• System V: Use copy_on_write bit:

– During fork() system call, all copy_on_write bits of
pages of process are turned on. If either process writes to
the page, incurs protection fault, and, in handling the fault,
kernel makes a new copy of the page for the faulting
process.

• BSD: Offers vfork() system call, which does not copy
address space. Tricky! (May corrupt process memory.)

Virtual Memory

• Virtual Memory

• Reading: Silbershatz, Chapter 9

• Virtual Memory, MIPS-Style

CPSC 410 / 611 : Operating Systems

18

Virtual Memory - MIPS Style

ASID VPN
Address

within page

Address

within frame
PFN

VPN/MaskASID PFN FlagsPFN Flags

Process no. Program (virtual) address

TLB

Page table

(in memory)

refill when

necessary

Physical address

Memory Translation -- VAX style

• Split virtual address
• Concatenate more-significant bits with Process ASID to

form page address.
• Look in the TLB to see if we find translation entry for

page.
• If YES, take high-order physical address bits.

– (Extra bits stored with PFN control access to
frame.)

• If NO, system must locate page entry in main-memory-
resident page table, load it into TLB, and start again.

CPSC 410 / 611 : Operating Systems

19

Memory Translation -- MIPS Style

• In principle: Do the same as VAX, but with as little
hardware as possible.

• Apart from register with ASID, the MMU is just a TLB.
• The rest is all implemented in software!
• When TLB cannot translate an address, a special

exception (TLB refill) is raised.
• Question: This is easy in principle, but tricky to do

efficiently.

MIPS TLB Entry Fields

• VPN: higher order bits of virtual address
• ASID: identifies the address space
• G: if set, disables the matching with the ASID

• PFN: Physical frame number
• N: 0 - cacheable, 1 - noncacheable
• D: write-control bit (set to 1 if writeable)
• V: valid bit

VPN ASID G PFN
Flags

N D V

input output

CPSC 410 / 611 : Operating Systems

20

MIPS Translation Process

• CPU generates a program (virtual) address on a instruction fetch,
a load, or a store.

• The 12 low-end bits are separated off.

• TLB matches key:

– Matching entry is selected, and PFN is glued to low-order bits
of the program address.

– Valid?: The V and D bits are checked. If problem, raise
exception, and set BadVAddr register with offending program
address.

– Cached?: IF C bit is set, the CPU looks in the cache for a copy
of the physical location’s data. If C bit is cleared, it neither
looks in nor refills the cache.

TLB Refill Exception

• Figure out if this was a correct translation. If not, trap to
handling of address errors.

• If translation correct, construct TLB entry.

• If TLB already full, select an entry to discard.

• Write the new entry into the TLB.

