CPSC 410/611 : Operating Systems

Memory Management

® Logical vs. physical address space
e Fragmentation
e Paging

® Segmentation

® Reading: Doeppner 7.1, 7.2

Memory Management

e Observations:
- Process needs at least CPU and memory to run.
- CPU context switching is relatively cheap.
- Swapping memory in/out from/to disk is expensive.

¢ Need to subdivide memory to accommodate multiple processes!

e How do we manage this memory?

Memory Management: Paging / Segmentation

CPSC 410/611 : Operating Systems

Requirements for Memory Management

Relocation
- We do not know a priori where memory of process will reside.
Protection

- No uncontrolled references to memory locations of other
processes.

- Memory references must be checked at run-time.
Sharing

- Data portions and program text portions.

Logical organization

- Take advantage of semantics of use.

- Dafc; portions (read/write) vs. program text portions (read
only).

Memory hierarchy
- RAM vs. secondary storage
- Swapping

Logical vs. Physical Memory Space

Logical address: address as seen by the process (i.e. as seen by the CPU).
Physical address: address as seen by the memory.

: limit relocation : 0s
: register register 0
i i physical
f : address
:] space of
: T 7
logical address i addressing error! E
space of process ! :

i

Memory Management Unit Physical Memory
partition table
process base size
P 28 1000
P, 1028 3000
Py 5034 250

Memory Management: Paging / Segmentation

CPSC 410/611 : Operating Systems

Swapping
0s
swap_out
[——
swap_in
[
start swapping store memory

ready._sw r'ead ? running

waiting_sw wa/ iting

Jobs are on disk | Jjobs are in memory

Fragmentation

Internal Fragmentation g/_;D

7
0s

External Fragmentation

Loaes

Memory Management: Paging / Segmentation

CPSC 410/611 : Operating Systems

Paging

e Contiguous allocation causes (external) fragmentation.

e Solution: Partition memory blocks into smaller subblocks (pages)
and allow them to be allocated non-contiguously.

simple relocation

Memory Management Unit

paging

_————

:al memory

physical memory

Basic Operations in Paging Hardware

CPU

Memory Management Unit

Od

physical
memory

Example: PDP-11 (16-bit address, 8kB pages)

Memory Management: Paging / Segmentation

CPSC 410/611 : Operating Systems

Internal Fragmentation in Paging

e Example:

I ! page size 4kB

|

L =
|

logical memory 4084 bytes
133008 wasted!

physical memory

Last frame allocated may not be completely full.
Average internal fragmentation per block is typically half frame size.
Large frames vs. small frames:

* Large frames cause more fragmentation.

+ Small frames cause more overhead (page table size, disk I/0)

Implementation of Page Table

® Page table involved in every access to memory. Speed very
important.

e Page table in registers?

- Example: 1MB logical address space, 2kB page size; needs a
page table with 512 entries!

e Page table in memory?

- Only keep a page table base register that points to location
of page table.

- Each access to memory would require two accesses to
memory!

e Cache portions of page table in registers?

- Use translation lookaside buffers (TLBs): typically a few
dozens entries.

- Hit ratio: Percentage of time an entry is found.
Hit ratio must be high in order to minimize overhead.

Memory Management: Paging / Segmentation

CPSC 410/611 : Operating Systems

Hierarchical (Multilevel) Paging

e Problem: Page tables can become very large! (e.g. 32-bit address space?)

Solution: Page the page table itself! (e.g. page directory vs. page table)
Two-level paging:
- Example: 32 bit logical address, page size 4kB

| page directory () | page table ;5 | offset,

page table >

base register |

Three-level paging (SPARC), four-level paging (68030), ...
AMDG64 (48-bit virtual addresses) has 4 levels.
Even deeper for 64 bit address spaces (5 to 6 levels)

Variations: Inverted Page Table

[procid | pageno | offset |

process id page no

w| v |[=]|oO

offset

e Array of page numbers indexed by frame number.
- page lookup: search for matching frame entry

® Size scales with physical memory.

e Single table for system (not per process)

e Used in early virt. memory systems, such as the
Atlas computer.

e Not practical today. (Why?)

Memory Management: Paging / Segmentation

CPSC 410/611 : Operating Systems

Variations: Hashed Page Table

e Used by many 64bit architectures:

[page number | offset | - IBM POWER
- HP PA-RISC
hash function - Itanium

e Scales with physical memory

procid | pageno | chain e One table for whole system
|j e Difficult to share memory between
:| processes

Software-loaded TLBs: Paging - MIPS Style

Process no. Program (virtual) address

Address
ASID VEN within page

e e

Page table
(in memory)

ASID VPN/Mask | PFN Flags PFN Flags
refill wher
necessary

Physical address \

Address
EEN within frame

Memory Management: Paging / Segmentation

CPSC 410/611 : Operating Systems

Recap: Memory Translation -- "VAX style”

L.
2.

Split virtual address

Concatenate more-significant bits with Process ASID to
form page address.

. Look in the TLB to see if we find translation entry for

page.

. If YES, take high-order physical address bits.

- (Extra bits stored with PFN control the access to
frame.)

. If NO, system must locate page entry in main-memory-

resident page table, load it into TLB, and start again.

Memory Translation -- MIPS Style

In principle: Do the same as VAX, but with as little
hardware as possible.

Apart from register with ASID, the MMU is just a TLB.
The rest is all implemented in software!

When TLB cannot translate an address, a special
exception (TLB refill) is raised.

Note: This is easy in principle, but tricky to do
efficiently.

Memory Management:

Paging / Segmentation

CPSC 410/611 : Operating Systems

MIPS TLB Entry Fields

input output

Flags
VPN ASID | 6 PFN N D V

e VPN: higher order bits of PFN: Physical frame number

virtual address e N: O - cacheable, 1 -
e ASID: identifies the address noncacheable

Space e D: write-control bit (set to 1 if
e G: if set, disables the writeable)

matching with the ASID

V: valid bit

MIPS Translation Process

1. CPU generates a program (virtual) address on a instruction fetch,

a load, or a store.

2. The 12 low-end bits are separated off.
3. Case 1: TLB matches key:

1. Matching entry is selected, and PFN is glued to low-order bits
of the program address.

2. Valid?: The V and D bits are checked. If problem, raise
exception, and set BadVAddr register with offending program
address.

3. Cached?: IF C bit is set, the CPU looks in the cache for a copy
of the physical location’s data. If C bit is cleared, it neither
looks in nor refills the cache.

4. Case 2: TLB does not match: TLB Refill Exception (see next page)

Memory Management: Paging / Segmentation

CPSC 410/611 : Operating Systems

TLB Refill Exception

e Figure out if this was a correct translation. If not, trap to

handling of address errors.

e If translation correct, construct TLB entry.
e If TLB already full, select an entry to discard.

e Write the new entry into the TLB.

Segmentation

Users think of memory in terms of segments (data, code, stack, objects,)
Data within a segment typically has uniform access restrictions.

_— Memory Management Unit
- | "::::q—l i
o — B

logical memory \—'_'

nhveical memory

: o —|—;—'
1 e —n —

physical memory

Memory Management: Paging / Segmentation

10

CPSC 410/611 : Operating Systems

Segmentation Hardware

I
| |
| |
|
CPU [T Ls — 2 ® |
|
\ / \
| |
| |
| |
| |
| |
| |
I s I
| |
\ | E !
|
! limit |base }
| |
| |
| |
| |
| segmenttable i physical
Memory Management Unit memory
Advantages of Segmentation
e Data in a segment typically semantically related
e Protection can be associated with segments
- read/write protection
- range checks for arrays
e Data/code sharing .
. sharing
e Disadvantages?
s |
: Timit T base |- == == — — — — _ :__ -
o — DL
-------------- = il
W /\37/, |
| s I i |
: Timit 1 base | :
[— | physical
===~ WY - -~ memory

Memory Management: Paging / Segmentation

11

CPSC 410/611 : Operating Systems

Solution: Paged Segmentation

e Example: MULTICS

segment number offset

| | |

18bit 16bit

Problem: 64kW segments -> external fragmentation!
Solution: Page the segments.
4 Page
segment humber PA9€# rr.. 4

18bit 6bit 10bit
Problem: need 2718 segment entries in segment tablel
Solution: Page the segment table.

page page
Page# iffset PI9eH# offset

| || |

8bit 10bit 6bit 10bit

Memory Management: Paging / Segmentation

12

