
CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 1

Memory Management !
•  Logical vs. physical address space!
•  Fragmentation !
•  Paging !
•  Segmentation !

•  Reading: Doeppner 7.1, 7.2 !

Memory Management !
•  Observations: !

–  Process needs at least CPU and memory to run.!
–  CPU context switching is relatively cheap.!
–  Swapping memory in/out from/to disk is expensive.!

•  Need to subdivide memory to accommodate multiple processes! !

•  How do we manage this memory?!

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 2

Requirements for Memory Management !
•  Relocation !

–  We do not know a priori where memory of process will reside.!
•  Protection !

–  No uncontrolled references to memory locations of other
processes.!

–  Memory references must be checked at run-time.!
•  Sharing!

–  Data portions and program text portions.!
•  Logical organization !

–  Take advantage of semantics of use.!
–  Data portions (read/write) vs. program text portions (read

only).!
•  Memory hierarchy!

–  RAM vs. secondary storage !
–  Swapping!

Logical vs. Physical Memory Space!

physical
address
space of
process
Pi

process base size
P1 28 1000
P2 1028 3000
P3 5034 250

CPU < +

OS relocation
register

limit
register

addressing error! logical address
space of process
Pi

Memory Management Unit
partition table

Physical Memory

•  Logical address: address as seen by the process (i.e. as seen by the CPU). !
•  Physical address: address as seen by the memory.!

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 3

Swapping!

waiting

running

start

waiting_sw

ready_sw ready

jobs are in memory jobs are on disk

OS
swap_out

swap_in

swapping store memory

Fragmentation !

OS
8MB 2MB

Internal Fragmentation !

4MB 8MB 12MB

?!

External Fragmentation !

P4 ?

P1 P1

P2

P1

P2

P3

P1

P3

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 4

Paging !
•  Contiguous allocation causes (external) fragmentation.!
•  Solution: Partition memory blocks into smaller subblocks (pages)

and allow them to be allocated non-contiguously.!

Memory Management Unit

logical memory

physical memory

simple relocation

Memory Management Unit

logical memory
physical memory

paging

Basic Operations in Paging Hardware !

Memory Management Unit

CPU

physical
memory

p d f d

f

p

page table

d

Example: PDP-11 (16-bit address, 8kB pages)

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 5

Internal Fragmentation in Paging !
•  Example: !

logical memory
13300B

page size 4kB

physical memory

•  Last frame allocated may not be completely full.
•  Average internal fragmentation per block is typically half frame size.
•  Large frames vs. small frames:

•  Large frames cause more fragmentation.
•  Small frames cause more overhead (page table size, disk I/O)

4084 bytes
wasted!

Implementation of Page Table!
•  Page table involved in every access to memory. Speed very

important.!
•  Page table in registers?!

–  Example: 1MB logical address space, 2kB page size; needs a
page table with 512 entries! !

•  Page table in memory?!
–  Only keep a page table base register that points to location

of page table.!
–  Each access to memory would require two accesses to

memory! !
•  Cache portions of page table in registers?!

–  Use translation lookaside buffers (TLBs): typically a few
dozens entries. !

–  Hit ratio: Percentage of time an entry is found.!
Hit ratio must be high in order to minimize overhead.!

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 6

Hierarchical (Multilevel) Paging !
•  Problem: Page tables can become very large! (e.g. 32-bit address space?)!
•  Solution: Page the page table itself! (e.g. page directory vs. page table)!
•  Two-level paging:!

–  Example: 32 bit logical address, page size 4kB !

•  Three-level paging (SPARC), four-level paging (68030), ...!
•  AMD64 (48-bit virtual addresses) has 4 levels.!
•  Even deeper for 64 bit address spaces (5 to 6 levels)!

f d

f

page table (10) offset(12) page directory (10)

page table
base register

Variations: Inverted Page Table!

process id! page no !
0 !
1 !
2 !
3 !
…!

n !

page no proc id offset

offset 3

•  Array of page numbers indexed by frame number.!
–  page lookup: search for matching frame entry!

•  Size scales with physical memory.!
•  Single table for system (not per process)!
•  Used in early virt. memory systems, such as the

Atlas computer.!
•  Not practical today. (Why?)!

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 7

Variations: Hashed Page Table!
•  Used by many 64bit architectures: !

–  IBM POWER !
–  HP PA-RISC!
–  Itanium !

•  Scales with physical memory!
•  One table for whole system!
•  Difficult to share memory between

processes!

page number offset

hash function

proc id page no chain

Software-loaded TLBs: Paging - MIPS Style!

ASID VPN Address
within page

Address
within frame PFN

VPN/Mask ASID PFN Flags PFN Flags

Process no. Program (virtual) address

TLB

Page table
(in memory)

refill when
necessary

Physical address

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 8

Recap: Memory Translation -- “VAX style”!
1.  Split virtual address!
2.  Concatenate more-significant bits with Process ASID to

form page address.!
3.  Look in the TLB to see if we find translation entry for

page.!
4.  If YES, take high-order physical address bits.!

–  (Extra bits stored with PFN control the access to
frame.)!

5.  If NO, system must locate page entry in main-memory-
resident page table, load it into TLB, and start again. !

Memory Translation -- MIPS Style !
•  In principle: Do the same as VAX, but with as little

hardware as possible.!
•  Apart from register with ASID, the MMU is just a TLB.!
•  The rest is all implemented in software! !
•  When TLB cannot translate an address, a special

exception (TLB refill) is raised. !
•  Note: This is easy in principle, but tricky to do

efficiently.!

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 9

MIPS TLB Entry Fields!

•  VPN: higher order bits of
virtual address!

•  ASID: identifies the address
space !

•  G: if set, disables the
matching with the ASID !

VPN ASID G PFN Flags
N D V

input output

•  PFN: Physical frame number!
•  N: 0 - cacheable, 1 -

noncacheable!
•  D: write-control bit (set to 1 if

writeable)!
•  V: valid bit !

MIPS Translation Process!
1.  CPU generates a program (virtual) address on a instruction fetch,

a load, or a store.!
2.  The 12 low-end bits are separated off.!
3.  Case 1: TLB matches key: !

1.  Matching entry is selected, and PFN is glued to low-order bits
of the program address.!

2.  Valid?: The V and D bits are checked. If problem, raise
exception, and set BadVAddr register with offending program
address.!

3.  Cached?: IF C bit is set, the CPU looks in the cache for a copy
of the physical location’s data. If C bit is cleared, it neither
looks in nor refills the cache.!

4.  Case 2: TLB does not match: TLB Refill Exception (see next page)!

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 10

TLB Refill Exception !
•  Figure out if this was a correct translation. If not, trap to

handling of address errors.!

•  If translation correct, construct TLB entry.!

•  If TLB already full, select an entry to discard.!

•  Write the new entry into the TLB.!

Segmentation !
•  Users think of memory in terms of segments (data, code, stack, objects,)!
•  Data within a segment typically has uniform access restrictions.!

Memory Management Unit

logical memory
physical memory

paging

segmentation Memory Management Unit

logical memory
physical memory

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 11

Segmentation Hardware!

Memory Management Unit

CPU

physical
memory

s d

s

segment table

limit base

<? +

Advantages of Segmentation !
•  Data in a segment typically semantically related!
•  Protection can be associated with segments!

–  read/write protection !
–  range checks for arrays!

•  Data/code sharing!
•  Disadvantages?!

physical!
memory!

s d

s
limit base

<? +

s d

s
limit base

<? +

sharing

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 12

10bit

page# page
offset

6bit

Solution: Paged Segmentation !
•  Example: MULTICS!

segment number offset

18bit 16bit

Problem: 64kW segments -> external fragmentation!

segment number

18bit 10bit

page# page
offset

6bit
Problem: need 2^18 segment entries in segment table!

8bit 10bit

page# page
offset

Solution: Page the segments.

Solution: Page the segment table.

