CPSC-410/611: Operating Systems Tutorial: Introduction

Introduction to OSs

What is an Operating System?

Architectural Support for Operating Systems

System Calls

Basic Organization of an Operating System

Introduction to OSs

e What is an Operating System?

CPSC-410/611: Operating Systems Tutorial: Introduction

What is an operating system?

e What an operating system is not:

- An o.s. is not a language or a compiler
- An o.s. is not a command interpreter / window system
- An o.s. is not a library of commands

- An o.s. is not a set of utilities

A Short Historical Tour

e First Generation Computer Systems (1949-1956):

- Single user: writes program, operates computer
through console or card reader / printer

- Absolute machine language
- I/0 devices
- Development of libraries; device drivers

- Compilers, linkers, loaders
- Relocatable code

CPSC-410/611: Operating Systems Tutorial: Introduction

Second-Generation Computers (1956-1963)

- Problems: scheduling, setup time

- Automation of Load/Translate/Load/Execute
e Batch systems
e Monitor programs

device drivers _T . T T_ control card interpreter
job sequencer / loader

e Job Control Language
o Advent of operators: computers as input/output box
- Problem: Resource management and I/O still under control of
programmer
e Memory protection
e Timers
e Privileged instructions

Third-Generation Computer Systems (1964-1975)

- Problem with batching: one-job-at-a-time

sequential: cPU D D-
o 1 Jobl

X Job2
better: C/PU D “ D Job3
o []

- Solution: Multiprogramming
- Job pools: have several programs ready to execute

- Keep several programs in memory

- New issues:
- Job scheduling
- Memory management

- Protection

CPSC-410/611: Operating Systems Tutorial: Introduction

Time Sharing (mid 1960s on)

e OS interleaves execution of multiple user programs with time
quantum

- CTSS (1961): time quantum 0.2 sec
e User returns to own the machine

e New aspects and issues:
- On-line file systems
- resource protection
- virtual memory
- sophisticated process scheduling

e Advent of systematic techniques for designing and analyzing OSs.

The Recent Past

e Personal computers and Computing as Utility
- History repeats itself
e Parallel systems
- Resource management
- Fault tolerance
e Real-Time Systems
e Distributed Systems
- Communication
- Resource sharing
- Network operating systems
- Distributed operating systems
® Secure Systems

CPSC-410/611: Operating Systems Tutorial: Introduction

What, then, is an Operating System?

e Controls and coordinates the use of system resources.

e Primary goal: Provide a convenient environment for a user to access
the available resources (CPU, memory, I/0)

- Provide appropriate abstractions (files, processes, ...)
- “virtual machine”

e Secondary goal: Efficient operation of the computer system.

¢ Resource Management
- Transforming: Create virtual substitutes that are easier to use.

- Multiplexing: Create the illusion of multiple resources from a
single resource

- Scheduling: "Who gets the resource when?”

The OS as Servant to Two Masters

Devices Clocks&Timers Locks Memory Heat&Power I/O Controllers CPUs

O O

0s

T

Performance ‘ Plug&Play Security Predictability | Convenience

Fault-Tolerance Power-Effectiveness

CPSC-410/611: Operating Systems Tutorial: Introduction

Introduction to OSs

e Architectural Support for Operating Systems

Architectural Support for OS's

e Dealing with Asynchronous Events: Exceptions, Interrupts
- Modern OS's are interrupt-driven (some still are not!).
- Simple interrupt handling vs. exception handling MIPS-style.

e Hardware Protection
- Privilege Levels (e.g. user/kernel/supervisor, etc.)
- Priviledged instructions: typically CPU control instructions
- I/0 Protection
- Memory Protection

e Support for Address Spaces

e Timers

CPSC-410/611: Operating Systems Tutorial: Introduction

Modern OS's are Interrupt-Driven

cPU

servicing
interrupt F‘ H H
process

executing ‘

IO Device
busy U
idle —

keyboard

pressed (‘

idle

Interrupts / Exceptions

e When an interrupt occurs, CPU stops, saves state, typically changes into
supervisor mode, and immediately jumps to predefined location.

e Appropriate interrupt service routine is found through the interrupt
vector.

e Return-from-interrupt automatically restores state.

0000

interrupt xy ——» xy interrupt vector area

XXXX

interrupt
service
routine

Interrupts/Exceptions can be invoked by asynchronous events (I/0
devices, timers, various errors) or can be software-generated (system
calls).

CPSC-410/611: Operating Systems Tutorial: Introduction

Exceptions, MIPS-Style

e MIPS CPU deals with exceptions.
- Interrupts are just a special case of exceptions.

e The MIPS Architecture has no interrupt-vector table!
- All exceptions trigger a jump to the same location, and de-
multiplexing happens in the exception handler, after looking up
the reason for the exception in the CAUSE register.

exception ———»
exception
handler

specific
service
routine

MIPS Exception Handler (low-level)

| xcptlow handler |

set up exception frame
on stack

save enough registers
to get by

save rest of registers

call C exception handler

restore registers

return from exception

CPSC-410/611: Operating Systems Tutorial: Introduction

Hardware Protection

e Originally: User owned the machine, no monitor. No protection
necessary.

e Resident monitor, resource sharing: One program can adversely
affect the execution of others.

e Examples
halt and other instructions
modify data or code in other programs or monitor itself

- access/modify data on storage devices
- refuse to relinquish processor
e Benign (bug) vs. malicious (virus)

Hardware Protection (2)

e Dual-mode operation
- user mode vs. supervisor mode
- e.g. halt instruction is privileged.
e I/0 Protection
- define all I/0 operations to be privileged
e Memory Protection
- protect interrupt vector, interrupt service routines

- determine legal address ranges

cPU memory

trap to operating system!

CPSC-410/611:

Operating Systems Tutorial: Introduction

Timers

e Timers can be set, and a trap occurs when the timer expires.
(And OS acquires control over the CPU.)

e Other uses of timers:
- time sharing
- time-of-day

Introduction to OSs

e System Calls

10

CPSC-410/611: Operating Systems

Tutorial: Introduction

External Structure of an OS

The outsider’s view of the OS.

applications programs/

processes
system call

system call
interface

i — === kernel

T Y !

e A\
v \\
] J— J J— J— = device drivers

hardware

System Calls

Provide the interface between a process and the OS.

Example: vanilla copy:

int copy(char * fnamel, *fname2) {

I FILE *f, *g;

char c;
f = fopen (fnamel, “r”);
g = fopen (fname2, “w”);

while (read(f, &c, 1) > 0)
write(g, c, 1);

fclose (f) ;

fclose (qg) ;

11

CPSC-410/611: Operating Systems Tutorial: Introduction

System Call Implementation: Linux on x86

e Example: syscall(int, setuid, uid t, uid)
e expands to:

_setuid:
subl $4,%exp
pushl %ebx
movzwl 12(%esp),%eax
movl %eax,4(%esp)

movl $23,%eax <<<---- System Call number (setuid = 23)
movl 4(%esp),%ebx
int $0x80 <<<---- call transfer to kernel entry point _system_call()

movl %eax,%edx

testl %edx,%edx

jge L2

negl %edx

movl %edx,_errno

movl $-1,%eax

popl %ebx

addl $4,3%esp
retL2:

movl %edx, %$eax

popl %ebx

addl $4,%esp

ret

Why Interrupts?

Reason 1: Can load user program into memory without
knowing exact address of system procedures

Reason 2: Separation of address space, including stacks:
user stack and kernel stack.

Reason 3: Automatic change to supervisor mode.

Reason 4: Can control access to kernel by masking
interrupts.

12

CPSC-410/611: Operating Systems

Tutorial: Introduction

Reason 4: Mutual Exclusion in Kernel

process 1 executing in kernel process 2 can not enter
interrupts are masked kernel because of
masked interrupts

1 2 yser process 2 3 4
user process 1
system call l
user space fraB
kernel l ‘ U rti

unmask interrupts
and return

Introduction to OSs

e Basic Organization of an Operating System

13

CPSC-410/611:

Operating Systems Tutorial: Introduction

External Structure of an OS

The outsider’s view of the OS.

applications programs/

processes
system call

system call
interface

== —7 =g kernel

T N)

e N
v \\
] J— J J— J— = device drivers

hardware

Internal Structure: Layered Services

The insider’s view of the OS.
Example: XINU [Comer 1984]

suser programs
efile system
sintermachine network communication
_ edevice manager and device drivers
ereal-time clock manager
_ einterprocess communication
eprocess coordinator
_ eprocess manager

ememory mandger
C ehardware

14

CPSC-410/611: Operating Systems Tutorial: Introduction

Internal Structure: u-Kernels

e Layered Kernels vs. Microkernels

I N
| user | bl | user |
user <
a o =
g =8 |2
file system Bl B “: e |8
3 a | ® @ 3
IPC 8 2121818 [user
3 1515 |3
kernel 1/0 and device management @ S
virtual memory)
process management | m-kernel | kernel
hardware hardware
Hierarchical decomposition. Kernel has only core operating system
Interaction only between adjacent functions (memory management, IPC,
layers. 1/0, interrupts)

Other functions run in server
processes in user space.

Operations in a u-Kernel

user file system server

J
file handle

u-kernel

open_file request

e Non-kernel components of the OS are implemented as server processes.
e Communication between user and servers using messages through kernel.
e ‘“client-server architecture within a single computer”

e Examples: Mach, Windows NT, Chorus, L4, ...

15

CPSC-410/611:

Operating Systems

Tutorial: Introduction

Windows 2000 System Structure

OSIX

S/2 Application
0S72 Applicatio Application

User Mode
Kernel Mode

Memary
Manager

Manager

Systems Qbject Manager

Hardware Abstraction Layer (HAL) |)
| Executive

Hardware

Figure 2.— System architecture

16

