
CPSC-410/611: Operating Systems Tutorial: Introduction

1

Introduction to OSs!

•! What is an Operating System? !

•! Architectural Support for Operating Systems !

•! System Calls!

•! Basic Organization of an Operating System!

Introduction to OSs!

•! What is an Operating System? !

•! Architectural Support for Operating Systems !

•! System Calls!

•! Basic Organization of an Operating System!

CPSC-410/611: Operating Systems Tutorial: Introduction

2

What is an operating system?!

•! What an operating system is not:!

–! An o.s. is not a language or a compiler !

–! An o.s. is not a command interpreter / window system !

–! An o.s. is not a library of commands!

–! An o.s. is not a set of utilities !

A Short Historical Tour !

•! First Generation Computer Systems (1949-1956):!

–! Single user: writes program, operates computer
through console or card reader / printer !

–! Absolute machine language!

–! I/O devices!

–! Development of libraries; device drivers!

–! Compilers, linkers, loaders!

–! Relocatable code!

CPSC-410/611: Operating Systems Tutorial: Introduction

3

Second-Generation Computers (1956-1963)!

–! Problems: scheduling, setup time!

–! Automation of Load/Translate/Load/Execute!
•! Batch systems!
•! Monitor programs!

•! Job Control Language!
•! Advent of operators: computers as input/output box!

–! Problem: Resource management and I/O still under control of
programmer!
•! Memory protection!
•! Timers !
•! Privileged instructions!

Monitor

device drivers
job sequencer / loader

control card interpreter

user program area

Third-Generation Computer Systems (1964-1975) !

–! Problem with batching: one-job-at-a-time !

–! Solution: Multiprogramming!
–! Job pools: have several programs ready to execute!

–! Keep several programs in memory!

–! New issues:!

–! Job scheduling!

–! Memory management!

–! Protection!

CPU!

CPU!

I/O!

I/O!

sequential:!

better:!

Job1!
Job2!

Job3!

Monitor! Job1! Job2! JobN!

CPSC-410/611: Operating Systems Tutorial: Introduction

4

Time Sharing (mid 1960s on)!

•! OS interleaves execution of multiple user programs with time
quantum !
–! CTSS (1961): time quantum 0.2 sec!

•! User returns to own the machine!

•! New aspects and issues:!
–! On-line file systems!
–! resource protection!
–! virtual memory!
–! sophisticated process scheduling!

•! Advent of systematic techniques for designing and analyzing OSs.!

The Recent Past!

•! Personal computers and Computing as Utility !
–! History repeats itself!

•! Parallel systems!
–! Resource management!
–! Fault tolerance!

•! Real-Time Systems!
•! Distributed Systems!

–! Communication!
–! Resource sharing!
–! Network operating systems!
–! Distributed operating systems !

•! Secure Systems!

CPSC-410/611: Operating Systems Tutorial: Introduction

5

What, then, is an Operating System? !

•! Controls and coordinates the use of system resources. !

•! Primary goal: Provide a convenient environment for a user to access
the available resources (CPU, memory, I/O) !
–! Provide appropriate abstractions (files, processes, ...) !
–! “virtual machine”!

•! Secondary goal: Efficient operation of the computer system.!

•! Resource Management !
–! Transforming: Create virtual substitutes that are easier to use.!
–! Multiplexing: Create the illusion of multiple resources from a

single resource!
–! Scheduling: “Who gets the resource when?”!

The OS as Servant to Two Masters!

OS!

Devices! Clocks&Timers! Locks! Memory! Heat&Power! I/O Controllers! CPUs!

Performance!

Power-Effectiveness!

Plug&Play! Security! Convenience!Predictability!

Fault-Tolerance! …..!

CPSC-410/611: Operating Systems Tutorial: Introduction

6

Introduction to OSs!

•! What is an Operating System? !

•! Architectural Support for Operating Systems !

•! System Calls!

•! Basic Organization of an Operating System!

Architectural Support for OS’s !

•! Dealing with Asynchronous Events: Exceptions, Interrupts!
–! Modern OS’s are interrupt-driven (some still are not!).!
–! Simple interrupt handling vs. exception handling MIPS-style.!

•! Hardware Protection !
–! Privilege Levels (e.g. user/kernel/supervisor, etc.) !
–! Priviledged instructions: typically CPU control instructions !
–! I/O Protection!
–! Memory Protection!

•! Support for Address Spaces!

•! Timers!

CPSC-410/611: Operating Systems Tutorial: Introduction

7

CPU!

IO Device!

keyboard!

process !
executing!

servicing!
interrupt!

busy!

idle!

idle!

pressed!

Modern OS’s are Interrupt-Driven!

Interrupts / Exceptions !

•! When an interrupt occurs, CPU stops, saves state, typically changes into
supervisor mode, and immediately jumps to predefined location.!

•! Appropriate interrupt service routine is found through the interrupt
vector.!

•! Return-from-interrupt automatically restores state. !

•! Interrupts/Exceptions can be invoked by asynchronous events (I/O
devices, timers, various errors) or can be software-generated (system
calls).

xxxx!

interrupt!
service!
routine!

interrupt xy! xy!

xxxx!

0000!

interrupt vector area!

CPSC-410/611: Operating Systems Tutorial: Introduction

8

Exceptions, MIPS-Style !

•! MIPS CPU deals with exceptions. !
–! Interrupts are just a special case of exceptions. !

•! The MIPS Architecture has no interrupt-vector table!!
–! All exceptions trigger a jump to the same location, and de-

multiplexing happens in the exception handler, after looking up
the reason for the exception in the CAUSE register.!

exception!
handler!

specific!
service!
routine!

exception!

MIPS Exception Handler (low-level)!

xcptlow_handler

set up exception frame!
on stack!

save enough registers!
to get by!

save rest of registers!

call C exception handler!

restore registers!

return from exception!

CPSC-410/611: Operating Systems Tutorial: Introduction

9

Hardware Protection!

•! Originally: User owned the machine, no monitor. No protection
necessary.!

•! Resident monitor, resource sharing: One program can adversely
affect the execution of others.!

•! Examples!
–! halt and other instructions!
–! modify data or code in other programs or monitor itself!
–! access/modify data on storage devices!
–! refuse to relinquish processor!

•! Benign (bug) vs. malicious (virus)!

•! Dual-mode operation!
–! user mode vs. supervisor mode!
–! e.g. halt instruction is privileged. !

•! I/O Protection!
–! define all I/O operations to be privileged!

•! Memory Protection!
–! protect interrupt vector, interrupt service routines!
–! determine legal address ranges!

CPU! >=! <! memory!

no! no!

trap to operating system!!

base! base + limit!

Hardware Protection (2) !

CPSC-410/611: Operating Systems Tutorial: Introduction

10

•! Timers can be set, and a trap occurs when the timer expires.
(And OS acquires control over the CPU.)!

•! Other uses of timers:!
–! time sharing!
–! time-of-day !

Timers!

Introduction to OSs!

•! What is an Operating System? !

•! Architectural Support for Operating Systems !

•! System Calls!

•! Basic Organization of an Operating System !

CPSC-410/611: Operating Systems Tutorial: Introduction

11

External Structure of an OS!

The outsider’s view of the OS.!

kernel!

device drivers!

hardware!

system call!
interface!

applications programs/!
processes!

system call!

Example: vanilla copy:!

int copy(char * fname1, *fname2) {

 FILE *f, *g;

 char c;

 f = fopen(fname1, “r”);

 g = fopen(fname2, “w”);

 while (read(f, &c, 1) > 0)

 write(g, c, 1);

 fclose(f);

 fclose(g);

} !

System Calls !

Provide the interface between a process and the OS.

CPSC-410/611: Operating Systems Tutorial: Introduction

12

System Call Implementation: Linux on x86 !

•! Example: _syscall(int, setuid, uid_t, uid)

•! expands to:!
_setuid:!

 subl $4,%exp!

 pushl %ebx!

 movzwl 12(%esp),%eax!

 movl %eax,4(%esp)!

 movl $23,%eax !<<<---- System Call number (setuid = 23)!

 movl 4(%esp),%ebx!

 int $0x80 !<<<---- call transfer to kernel entry point _system_call()!

 movl %eax,%edx!

 testl %edx,%edx!

 jge L2!

 negl %edx!

 movl %edx,_errno!

 movl $-1,%eax!

 popl %ebx!

 addl $4,%esp!

retL2: !

 movl %edx,%eax!

 popl %ebx!

 addl $4,%esp!

 ret!

Why Interrupts? !

Reason 1: Can load user program into memory without
knowing exact address of system procedures !

Reason 2: Separation of address space, including stacks:
user stack and kernel stack.!

Reason 3: Automatic change to supervisor mode.!

Reason 4: Can control access to kernel by masking
interrupts.!

CPSC-410/611: Operating Systems Tutorial: Introduction

13

Reason 4: Mutual Exclusion in Kernel !

user process 1!

system call!
user space!

kernel!

1!

trap!

2! user process 2! 3! 4!

process 1 executing in kernel!
interrupts are masked!

process 2 can not enter!
kernel because of !
masked interrupts!

rti!

unmask interrupts!
and return!

Introduction to OSs!

•! What is an Operating System? !

•! Architectural Support for Operating Systems !

•! System Calls!

•! Basic Organization of an Operating System!

CPSC-410/611: Operating Systems Tutorial: Introduction

14

External Structure of an OS!

The outsider’s view of the OS.!

kernel!

device drivers!

hardware!

system call!
interface!

applications programs/!
processes!

system call!

Internal Structure: Layered Services!

The insider’s view of the OS.!
Example: XINU [Comer 1984]!

•!hardware!

•!process coordinator!
•!process manager!
•!memory manager!

•!interprocess communication!
•!real-time clock manager!
•!device manager and device drivers!
•!intermachine network communication!
•!file system!
•!user programs!

CPSC-410/611: Operating Systems Tutorial: Introduction

15

Internal Structure: µ-Kernels!
•! Layered Kernels vs. Microkernels!

hardware!

process management!

virtual memory!

I/O and device management!

IPC!

file system!

user! user!...!

kernel!

user!

hardware!

virtual m
em

ory
!

process server!

file server!

device drivers!

user process!

kernel!

user!

m-kernel!

Kernel has only core operating system
functions (memory management, IPC,
I/O, interrupts)!
Other functions run in server
processes in user space.!

Hierarchical decomposition.!
Interaction only between adjacent
layers.!

Operations in a µ-Kernel !

•! Non-kernel components of the OS are implemented as server processes.!

•! Communication between user and servers using messages through kernel. !
•! “client-server architecture within a single computer” !
•! Examples: Mach, Windows NT, Chorus, L4, ...!

µ-kernel!

user! file system server!

open_file request!
file handle!

CPSC-410/611: Operating Systems Tutorial: Introduction

16

Windows 2000 System Structure !

