

- Essential Puzzle Requirements
- ASIC-Resistant Puzzles
- Proof-of-Useful-Work
- Non-outsourceable Puzzles
- Proof-of-Stake "Virtual Mining"

Alternative Mining Puzzles

- Essential Puzzle Requirements
- ASIC-Resistant Puzzles
- Proof-of-Useful-Work
- Non-outsourceable Puzzles
- Proof-of-Stake "Virtual Mining"

Example: scrypt (Colin Percival, 2009)

Memory hard hash function (requires large amounts of memory) => Prevents large-scale parallel attack with limited resources.

Most widely used alternative Bitcoin puzzle (e.g. in LiteCoin)

Also used elsewhere in security (PW-hashing, Tarsnap)

- 1. Fill memory with random values
- 2. Read from the memory in random order

Counter /	Argument: S	SHA2 is fine!
Bitcoin Mining ASIC Big ASICs only marg	0	ng much. rformant than small ones.
Ordinary SHA2 Circuit	Affordable ASIC	Expensive ASIC

Summary

Useful proof-of-work is a natural goal (while maintaining security requirements) The benefit must be a pure public good Viable approaches include storage, prime-finding, others may be possible Realized benefit so far has been limited

Alternative Mining Puzzles

- Essential Puzzle Requirements
- ASIC-Resistant Puzzles
- Proof-of-Useful-Work
- Non-outsourceable Puzzles
- Proof-of-Stake "Virtual Mining"

Variations of Virtual Mining		
Proof-of-Stake:	"Stake" of a coin grows over time as long as the coin is unused	
Proof-of-Burn:	mining with a coin destroys it	
Proof-of-Deposit:	can reclaim a coin after some time	
Proof-of-Activity:	any coin might be win (if online)	

Conclusion

Many possible design goals for alternative puzzles:

- Prevent ASIC miners from dominating
- Prevent large pools from dominating
- Intrinsic usefulness
- Eliminate the need for mining hardware at all

Best tradeoff is unclear for now

Outlook: alternatives will coexist for the near future