Bitcoin Mining

- The Task of Bitcoin Miners
- Mining Hardware
- Energy Consumption & Ecology
- Mining Pools
- Mining Incentives and Strategies

Recap: Bitcoin Miners

Bitcoin depends on miners to
- Store and broadcast the block chain
- Validate new transactions
- Vote (by hash power) on consensus

But who are the miners?!
Cryptocurrency Technologies

Bitcoin Mining

Bitcoin Mining

- The Task of Bitcoin Miners
 - Mining Hardware
- Energy Consumption & Ecology
- Mining Pools
- Mining Incentives and Strategies

So, you want to be a Miner?

Gold miners ascending the Chilkoot pass

Klondike gold rush of 1898
Mining Bitcoins in 6 Easy Steps

1. Join the network, listen for transactions
 a. Validate all proposed transactions
2. Listen for new blocks, maintain block chain
 a. When a new block is proposed, validate it
3. Assemble a new valid block
4. Find the nonce to make your block valid
5. Hope everybody accepts your new block
6. Profit!

Finding a valid Block

```
| prev: H( ) | prev: H( ) |
| mrklroot: H( ) | mrklroot: H( ) |
| nonce: 0x7a83 | nonce: 0x7f7e... |
| hash: 0x0000 | hash: 0x0000... |
```

```
| H( ) | H( ) |
| H( ) | H( ) |
| H( ) | H( ) |
```

All changed

25.0→A coinbase: 0x3df5...65

transaction transaction transaction
Mining Difficulty “Target”

- 256 bit hash output
- 64+ leading zeroes required

difficulty Aug. 2014 = $2^{66.2}$

= 84,758,978,290,086,040,000

Setting Mining Difficulty

Every two weeks, compute:

\[
\text{next_difficulty} = \text{previous_difficulty} \times \left(\frac{2 \text{ weeks}}{\text{time to mine last 2016 blocks}} \right)
\]

Expected number of blocks in 2 weeks at 10 minutes/block
Mining Difficulty over Time

Time to find a Block

Chart Explained
- **Red line**: The actual difficulty.
- **Green line**: The estimated next difficulty.
- **Blue line**: Average block generation time of 2016 blocks. Block generation time is also known as confirmation time.
- **Gray line**: Average block generation time of 1000 blocks.
Cryptocurrency Technologies

Bitcoin Mining

- The Task of Bitcoin Miners
- Mining Hardware
- Energy Consumption & Ecology
- Mining Pools
- Mining Incentives and Strategies

SHA-256

- General purpose hash function
 - Part of SHA-2 family: SHA-256,SHA-384,SHA-512
- Published in 2001
- Designed by the NSA
- Remains unbroken cryptographically
 - Weaknesses known
- SHA-3 (replacement) under standardization
SHA-256: Details

Iterate through compression 64 times.

K_i: constants of the algorithm

W_i: computed from input string

CPU Mining

```
while (nonce < MAX) {
    if (SHA256(SHA256(block)) < target) return nonce;
    nonce++;
}
```

Two hashes

Throughput on a high-end PC = 10–20 MHz ≈ 2^{24}

139,461 years to find a block today!
GPU Mining

- GPUs designed for high-performance graphics
 - high parallelism
 - high throughput
- First used for Bitcoin ca. October 2010
- Implemented in OpenCL
 - Later: hacks for specific cards

GPU Mining Advantages

1. easily available, easy to set up
2. parallel ALUs
3. bit-specific instructions
4. can drive many from 1 CPU
5. can overclock!
“Goodput”

- Observation:
 Some errors are okay. May miss a valid block, though.
- Goodput: throughput \(\times\) success rate
- Worth over-clocking by 50% with 30% errors!

GPU Mining Rigs

Source: LeonardH, cryptocurrenciestalk.com
GPU Mining Disadvantages

1. Poor utilization of hardware
2. Poor cooling
3. Large power draw
4. Few boards to hold multiple GPUs

Throughput on a good card = 20-200 MHz \approx 2^{27}
\approx 173 \text{ years} \text{ to find a block with 100 cards!}

FPGA Mining

- FPGA: Field Programmable Gate Area
- First used for Bitcoin ca. June 2011
- Implemented in Verilog
FPGA Mining Advantages

1. Higher performance than GPUs
2. Excellent performance on bitwise operations
3. Better cooling
4. Extensive customization, optimization

FPGA Mining Rigs

Bob Buskirk, thinkcomputers.org
FPGA Mining Disadvantages

1. Higher power draw than GPUs
2. Poor optimization of 32-bit adds
3. Fewer hobbyists with sufficient expertise
4. More expensive than GPUs
5. Marginal performance/cost advantage over GPUs

Throughput on a good card = $100-1000$ MHz $\approx 2^{30}$

25 years to find a block w/100 boards!

Bitcoin ASICs

Bitcoin Miners for Sale on eBay
If you're a hobby miner who wants to buy a couple rigs for your house, eBay has some decent deals on mining hardware.

<table>
<thead>
<tr>
<th>Miner</th>
<th>Hash Power</th>
<th>Price</th>
<th>Buy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antminer S5</td>
<td>1.16 TH/s</td>
<td>$139.99</td>
<td></td>
</tr>
<tr>
<td>Antminer S7</td>
<td>4.73 TH/s</td>
<td>$489.99</td>
<td></td>
</tr>
<tr>
<td>Antminer S9</td>
<td>14.0 TH/s</td>
<td>$3,000</td>
<td></td>
</tr>
<tr>
<td>Avalon6</td>
<td>3.50 TH/s</td>
<td>$550.95</td>
<td></td>
</tr>
<tr>
<td>SP20 Jackson</td>
<td>1.17 TH/s</td>
<td>$90.00</td>
<td></td>
</tr>
</tbody>
</table>
Cryptocurrency Technologies

Bitcoin Mining

Bitcoin ASICs

- Special purpose
- Approaching known limits on feature sizes
 - Less than 10x performance improvement expected
- Designed to be run constantly for life
- Require significant expertise, long lead-times
- Perhaps the fastest chip development ever!

Case Study: TerraMiner IV

- First shipped Jan 2014
- 2TH/s
- Cost: US$6000

Still, **14 months** to find a block!
Professional Mining Centers

Needs:
- cheap power
- good network
- cool climate

BitFury mining center, Republic of Georgia

Evolution of Mining

gold pan sluice box placer mining pit mining
The Future

Q: Can small miners stay in the game?
Q: Do ASICs violate the original Bitcoin vision?
Q: Would we be better off without ASICs?

Bitcoin Mining

• The Task of Bitcoin Miners
• Mining Hardware
 • Energy Consumption & Ecology
• Mining Pools
• Mining Incentives and Strategies
Thermodynamic Limits

Landauer’s Principle: Any non-reversible computation must consume a minimum amount of energy.

Specifically, each bit changed requires \((kT \ln 2)\) joules.

SHA-256 is not reversible

Energy consumption is inevitable!

Energy Aspects of Bitcoin Mining

- **Embodied Energy:**
 - used to manufacture mining chips & other equipment
 - should **decrease** over time
 - returns to scale

- **Electricity:**
 - used to perform computation
 - should **increase** over time
 - returns to scale

- **Cooling:**
 - required to protect equipment
 - costs more with increased scale!

- Each block worth approximately US$15,000
- Approximately $25/s generated
- Industrial electricity (US): $0.03/MJ
- $0.10/kWh

Electricity consumed:
900 MJ/s = 900 MW

- Each block worth approximately US$28,500
- Approximately $47.5/s generated
- Industrial electricity (US): $0.10/kWh, or $0.03/MJ
- Bitcoin miners could buy about 1580 MH/s

Electricity consumed:
1580 MJ/s = 1580 MW
Estimating Energy Usage: bottom-up (2014)

- Best claimed efficiency: 1 W / GH/s (excluding cooling, embodied energy)
- Network hash rate: 150,000,000 GH/s (150 PH/s)

electricity consumed:

150 MW

Est. Energy Usage: bottom-up (early 2015)

- Best claimed efficiency: 1/3 W / GH/s (excluding cooling, embodied energy)
- Network hash rate: 350,000,000 GH/s (350 PH/s)

electricity consumed:

117 MW

- Good claimed efficiency: 0.1 W/GH/s (Artminer S9, excluding cooling, embodied energy)
- Network hash rate: 3,200,000,000 GH/s (3.2 EH/s)

Electricity consumed: 320 MW

How much is a MW?

Three Gorges Dam = 10,000 MW
Typical hydro plant ≈ 1,000 MW

Kashiwazaki-Kariwa nuclear power plant = 7,000 MW
Typical nuclear plant ≈ 4,000 MW

Major coal-fired plant ≈ 2,000 MW
All Payment Systems require Energy

Observation: In the limit, computing devices produce heat almost as well as electric heaters!

- Why not install mining rigs as home heaters?
- Challenges:
 - Ownership/maintenance model
 - Gas heaters still at least 10x more efficient
 - What happens in summer?
Open Questions

• Will Bitcoin drive out electricity subsidies?

• Will Bitcoin require guarding power outlets?

• Can we make a currency with no proof-of-work?

Bitcoin Mining

• The Task of Bitcoin Miners

• Mining Hardware

• Energy Consumption & Ecology

• Mining Pools

• Mining Incentives and Strategies
Economics of being a Small Miner

- Example: Antminer S9
- Cost: ~ US$ 3,000
- Hash power: 14 TH/s
- Fraction of total hash rate = 14/3,200,000 = 4.4 * 10^-6
- Expected time to find a block: ~4.3 years!
- Expected revenue: $538/month
- (assume no energy costs!)

Problem: Mining Uncertainty

<table>
<thead>
<tr>
<th># blocks found in one year</th>
<th>probability (Poisson dist.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>79.3%</td>
</tr>
<tr>
<td>1</td>
<td>18.4%</td>
</tr>
<tr>
<td>2</td>
<td>2.1%</td>
</tr>
<tr>
<td>3+</td>
<td>0.2%</td>
</tr>
</tbody>
</table>
Idea: Could Small Miners pool Risk?

Mining Pools

- **Goal:** pool participants all attempt to mine a block with the same coinbase recipient
 - send money to key owned by pool manager
- **Distribute revenues** to members based on how much work they have performed
 - minus a cut for pool manager

Q: How do we know how much work members perform?
Mining Shares

Idea: Prove work with “near-valid” blocks (shares)

```
4AA087F0A52ED2093FA816E53B9B6317F9B8C1227A61F9481AFED67301F2E3FB
D3E51477DCAB108750A5BC9093F6510759CC880BB171A5B77FB4A34ACA27DEDD
00000000008534FF68B989350D90DF5669E3403BD16F1CDFD41CF17D6B474255
BB34ECA3DBB52EFF4B104EEBCC0974841EF2F3A59EBBC4474A12F9F595EB81F4B
00000000002F891C1E232F687E41515637F7699EA0F462C2564233FE082B0AF
90488133779E7E98177AF1C765CF02D01AB484D0F555533B6C4CFCA201CBA1
460BEFA43B7083502D36D9D0864AFB99A100B3B8D04EA4F7B8E18174A0BF6
0000000000000000078FB7E1F7E2E485B8BC71412197EB144B911FA77BAA80
652F374601D149AC47ED01E7776138456181FA4F9D0EED8C4FDE3BF6B1B7ECE
78552642143A291CDB60DA09CC80D066BC723FD5FD20F9B50D614313529AF3
000000000041EE593434686000AF77F54CDE839A6CE30957B14EDC10B15C9E5
9C20B06B01A0136F192BD48E0F372A4B9E6A6BC36F02FCE2D22FD9780026ABF
```

Mining Pools

Hey folks! Here is our next block to work on:

```
0x000000000000000003f89...
0x00000000000000000731f89...
0x0000000000000000045a661f...
```

Pool manager

prev: H()
mrkl_root: H()
nonce:
hash:

coinbase: EZ → pool
Mining Pool Protocols

- **API** for fetching blocks, submitting shares
 - Stratum
 - Getwork
 - Getblockshare
- Proposed for standardization with a Bitcoin Improvement Proposal (BIP)
- Increasingly important; some hardware support

Mining Pool Variations

Pay per share: flat reward per share
- Typically minus a significant fee
- What if miners never send in valid blocks?

Proportional: typically since last block
- Lower risk for pool manager
- More work to verify

“Luke-jr” approach: no management fee
- Miners can only get paid out in whole BTC
- Pool owner keeps spread
Block-Withholding Attacks: Assumptions

Rules that govern pooled mining:

1. **A pool’s revenues** are proportional to the number of Bitcoin blocks that its members mine, measured as a fraction of the total blocks mined in that period.

2. **A miner’s rewards** are proportional to the number of “shares” submitted, as a fraction of the total shares submitted by all members of that pool.

3. Miners can easily create numerous pseudo-identities (“sybils”), each contributing a very small amount of mining power. Therefore pools can’t easily detect if a miner is withholding valid blocks (and can’t punish a miner for doing so).

Block-Withholding Attacks: Example

![Diagram showing the distribution of hash power and blocks among pools, with calculations for payouts.]

Arvind Narayanan, “Bitcoin and game theory: we’re still scratching the surface”, March 31, 2015
Are Mining Pools a good Thing?

Pros:
- Make mining more **predictable**
- Allow small miners to **participate**
- More miners using **updated validation software**

Cons:
- Lead to **centralization**
- Discourage miners from running **full nodes**

Q: Can we prevent mining pools?
Bitcoin Mining

- The Task of Bitcoin Miners
- Mining Hardware
- Energy Consumption & Ecology
- Mining Pools
- Mining Incentives and Strategies

Game-Theoretical Analysis of Mining

Several strategic decisions
- Which transactions to include in a block
 - Default: any above minimum transaction fee
- Which block to mine on top of
 - Default: longest valid chain
- How to choose between colliding blocks
 - Default: first block heard
- When to announce new blocks
 - Default: immediately after finding them
Game-Theoretical Analysis of Mining

Assume you control $0 < \alpha < 1$ of mining power.

Q: Can you profit from non-default strategy?

A: For some α yes, though analysis is ongoing!

Forking Attacks

[Diagram showing fork attacks with labels M→B and M→M']
Forking Attacks

- Certainly possible if $\alpha > 0.5$
 - may be possible with less
 - avoid block collisions
- Attack is detectable
- Might be reversed
- Might crash exchange rate

Forking Attacks via Bribery

Idea: Building $\alpha > 0.5$ is expensive. Why not _rent_ it instead?

Payment techniques:
1. Out-of-band _bribery_
2. Run a mining pool at a loss
3. Insert large “tips” in the block chain

This is an open problem!
Checkpoint Lockin

- Once in a while, old block is hardcoded into Bitcoin software.
- Prevents DOS attacks that flood unusable chains.
- Prevents attacks involving isolating nodes and giving fake chains.
- Also, optimizes initial blockchain download.

Default clients ship with built-in checkpoint

Temporary Block-withholding Attacks

Strategy: don’t announce blocks right away. Try to get ahead!

"Selfish mining"

All other miners are wasting effort here!
Temporary Block-withholding Attacks (cont)

What happens if a block is announced when you’re ahead by 1?

The race is on!

Temporary Block-withholding Attacks

- Improved strategy for any α if you can win every race
 - Need ideal network position
 - Bribery?
- With a 50% chance of winning races, improves over default strategy for $\alpha > 0.25$.
- Not yet observed in practice!

Note: This is a surprising departure from previous assumptions!
Punitive Forking

Suppose you want to blacklist transactions from address X.
- Freeze an individual’s money forever

Extreme strategy: Announce that you will refuse to mine on any chain with a transaction from X.

With $\alpha < 0.5$ you will soon fall behind the network.

Feather-forking Strategy

Punitive forking does not work without majority of hash power.

To blacklist transactions from X, announce that you will refuse to mine directly on any block with a transaction from X.
- but you’ll concede after n confirming blocks

The chance of pruning an offending block is α^2.
Response to Feather Forking

For other miners, including a transaction from X induces an α^2 chance of losing a block.

So, it may be safer to join in on the blacklist!

... Unless X is willing to compensate with appropriate transaction fee.

Interesting: You can force a blacklist with $\alpha < 0.5$!

Depends on convincing other miners that you will fork.

What is Feather-forking good for?

For freezing individual Bitcoin owners:
- ransom / extortion
- law enforcement

Or for Enforcing a minimum transaction fee . . .

Example:
Default policy:

$$\text{priority} = \frac{\text{sum(input_value * input_age)}}{\text{size_in_bytes}}$$

New: accept without fees only if
$$\text{priority} > 0.56789$$
Summary

- **Miners are free to implement any strategy.**

- **Very little** non-default behavior in the wild.

- **No complete** game-theoretic models exist.