
Cryptocurrency Technologies Cryptography and Cryptocurrencies

1

Intro to Cryptography and Cryptocurrencies

•  Cryptographic Hash Functions

•  Hash Pointers and Data Structures

– Block Chains

– Merkle Trees

•  Digital Signatures

•  Public Keys and Identities

•  Let’s design us some Digital Cash!

Intro to Cryptography and Cryptocurrencies

•  Cryptographic Hash Functions

•  Hash Pointers and Data Structures

– Block Chains

– Merkle Trees

•  Digital Signatures

•  Public Keys and Identities

•  Let’s design us some Digital Cash!

Cryptocurrency Technologies Cryptography and Cryptocurrencies

2

Cryptographic Hash Function

Hash Function: Mathematical Function with following 3
properties:

The input can be any string of any size.

It produces a fixed-size output. (say, 256-bit long)

Is efficiently computable. (say, O(n) for n-bit string)

Such general hash function can be used to build hash
tables, but they are not of much use in cryptocurrencies.

What we need are cryptographic hash functions.

Cryptographic Hash Functions

A Hash Function is cryptographically secure if it
satisfies the following 3 security properties:

Property 1: Collision Resistance

Property 2: Hiding

Property 3: “Puzzle Friendliness”

Cryptocurrency Technologies Cryptography and Cryptocurrencies

3

Cryptographic Hash Functions

A Hash Function is cryptographically secure if it
satisfies the following 3 security properties:

Property 1: Collision Resistance

Property 2: Hiding

Property 3: “Puzzle Friendliness”

Crypto Hash Property 1: Collision Resistance

In other words: If we have x and H(x), we can “never”
find an y with a matching H(y).

Collision Resistance: A hash function H is said to be
collision resistant if it is infeasible to find two
values, x and y, such that x != y, yet H(x) = H(y).

x

y

H(x) = H(y)

Cryptocurrency Technologies Cryptography and Cryptocurrencies

4

Collision Resistance ?!

Collisions do exist ...

possible inputs

possible outputs

… but can anyone find them?

Collision Resistance ?! (2)

How to find a collision

try 2130 randomly chosen inputs

99.8% chance that two of them will collide

This works no matter what H is …

… but it takes too long to matter

Cryptocurrency Technologies Cryptography and Cryptocurrencies

5

Collision Resistance ?! (3)

Q: Is there a faster way to find collisions?

A:
For some possible H’s, yes.�
For others, we don’t know of one.

No H has been proven collision-free.

Collision Resistance

Application: Hash as a Message Digest

If we know that H(x) = H(y), it is safe to
assume that x = y.

Example: To recognize a file that we saw
before, just remember its hash.

This works because hash is small.

Cryptocurrency Technologies Cryptography and Cryptocurrencies

6

Cryptographic Hash Functions

A Hash Function is cryptographically secure if it
satisfies the following 3 security properties:

Property 1: Collision Resistance

Property 2: Hiding

Property 3: “Puzzle Friendliness”

Crypto Hash Property 2: Hiding

We want something like this:

Given H(x), it is infeasible to find x.

Example:

H(“heads”)

H(“tails”)

easy to find x!

The value for x is easy to find because the
distribution is not “spread out” (only two values!)

Cryptocurrency Technologies Cryptography and Cryptocurrencies

7

Crypto Hash Property 2: Hiding (cont)

“r || x” stands for “r concatenated with x”

Hiding: A hash function H is said to be hiding if when a
secret value r is chosen from a probability
distribution that has high min-entropy, then, given
H(r || x), it is infeasible to find x.

“High min-entropy” means that the distribution is “very
spread out”, so that no particular value is chosen with
more than negligible probability.

Application of Hiding Property: Commitment

Want to “seal a value in an envelope”, and

“open the envelope” later.

Commit to a value, reveal it later.

Cryptocurrency Technologies Cryptography and Cryptocurrencies

8

Application of Hiding Property: Commitment

Commitment Scheme consists of two algorithms:

•  com := commit(msg,key) takes message and secret key, and

returns commitment

•  verify(com,msg,key) returns true if com = commit(msg,key)

and false otherwise.

We require two security properties:

•  Hiding: Given com, it is infeasible to find msg.

•  Binding: It is infeasible to find two pairs (msg,key) and

(msg’,key’) s.t. msg != msg’ �
and commit(msg,key) == commit (msg’,key’).

Implementation of Commitment

•  commit(msg,key) := H(key || msg)

•  verify(com,msg,key) := (H(key || msg) == com)

Proof of security properties:

•  Hiding: Given H(key || msg), it is infeasible to find msg.

•  Binding: It is infeasible to find msg != msg’ �

such that H(key || msg) == H(key || msg’)

Cryptocurrency Technologies Cryptography and Cryptocurrencies

9

Cryptographic Hash Functions

A Hash Function is cryptographically secure if it
satisfies the following 3 security properties:

Property 1: Collision Resistance

Property 2: Hiding

Property 3: “Puzzle Friendliness”

Crypto Hash Property 3: “Puzzle Friendliness”

Puzzle Friendliness: A hash function H is said to be
puzzle friendly if for every possible n-bit output
value y, if k is chosen from a distribution with high
min-entropy, then it is infeasible to find x such
that H(k || x) = y, in time significantly less than 2n.

If a hash function is puzzle friendly, then there is no
solving strategy for this type of puzzle that is much
better than trying random values of x.

Bitcoin mining is just such a computational puzzle.

Cryptocurrency Technologies Cryptography and Cryptocurrencies

10

Intro to Cryptography and Cryptocurrencies

•  Cryptographic Hash Functions

•  Hash Pointers and Data Structures

– Block Chains

– Merkle Trees

•  Digital Signatures

•  Public Keys and Identities

•  Let’s design us some Digital Cash!

Hash Pointers

Hash Pointer is:

•  pointer to where some info is stored, and

•  (cryptographic) hash of the info

Given a Hash Pointer, we can

•  ask to get the info back, and

•  verify that it hasn’t changed

Cryptocurrency Technologies Cryptography and Cryptocurrencies

11

Hash Pointers

(data)
 will draw hash
pointers like this

H()

Hash Pointers

Key Idea:

Build data structures with hash pointers.

Cryptocurrency Technologies Cryptography and Cryptocurrencies

12

Linked List with Hash Pointers: “Block Chain”

data

prev: H()

data

prev: H()

data

prev: H()

H()

use case: tamper-evident log

Detecting Tampering in Block Chains

data

prev: H()

data

prev: H()

data

prev: H()

H()

use case: tamper-evident log

Cryptocurrency Technologies Cryptography and Cryptocurrencies

13

Binary Trees with Hash Pointers: “Merkle Tree”

H() H()

H() H()
 H() H()

H() H()
 H() H()
 H() H()
 H() H()

(data)
 (data)
 (data)
 (data)
 (data)
 (data)
 (data)
 (data)

Used in file systems (IPFS, Btrfs, ZFS), BitTorrent, Apache Wave, Git,
various backup systems, Bitcoin, Ethereum, and database systems.

Proving Membership in a Merkle Tree

H() H()

H() H()

H() H()

(data)

Single branches of the tree
can be downloaded at a time.

To prove that a data block is
included in the tree

only requires showing blocks
in the path from that data
block to the root.

Cryptocurrency Technologies Cryptography and Cryptocurrencies

14

Benefits of Merkle Trees

Tree holds many items . . .

. . . but just need to remember the root hash

Can verify membership in O(log n) time/space

Variant: sorted Merkle tree

can verify non-membership in O(log n)

(show items before, after the missing one)

Beyond Merkle Trees ..

We can use hash pointer in any pointer-based
data structure that has no cycles.

Cryptocurrency Technologies Cryptography and Cryptocurrencies

15

Intro to Cryptography and Cryptocurrencies

•  Cryptographic Hash Functions

•  Hash Pointers and Data Structures

– Block Chains

– Merkle Trees

•  Digital Signatures

•  Public Keys and Identities

•  Let’s design us some Digital Cash!

Digital Signatures

Q: What do we want from signatures?

Only you can sign, but anyone can verify.

Signature is tied to a particular document,

i.e., cannot be cut-and-pasted to another
document.

Cryptocurrency Technologies Cryptography and Cryptocurrencies

16

Digital Signature Scheme

Digital Signature Scheme consists of 3 algorithms:

•  (sk,pk) := generateKeys(keysize) generates a key pair

–  sk is secret key, used to sign messages

–  pk is public verification key, given to anybody

•  sig := sign(sk, msg) outputs signature for msg with key sk.

•  verify(pk,msg,sig) returns true if signature is valid and

false otherwise.

Requirements for Digital Signature Scheme

Valid signatures must verify!

verify(pk, msg, sign(sk, msg)) == true

Signatures must be unforgeable!

An adversary who

•  knows pk

•  has seen signatures on messages of

her choice

cannot produce a verifiable signature on a
new message.

Cryptocurrency Technologies Cryptography and Cryptocurrencies

17

The “Unforgeability Game”

challenger attacker

(sk, pk)

m0

sign(sk, m0)

m1

sign(sk, m1)

. . .
M, sig

M not in { m0, m1, … }
verify(pk, M, sig)

if true, attacker wins

Digital Signatures in Practice

Key generation algorithms must be randomized.

.. need good source of randomness

Sign and verify are expensive operations for
large messages.

Fix: use H(msg) rather than msg.

Check this out:

Signing a hash pointer “covers” the whole data
structure!

Cryptocurrency Technologies Cryptography and Cryptocurrencies

18

Intro to Cryptography and Cryptocurrencies

•  Cryptographic Hash Functions

•  Hash Pointers and Data Structures

– Block Chains

– Merkle Trees

•  Digital Signatures

•  Public Keys and Identities

•  Let’s design us some Digital Cash!

Signatures, Public Keys, and Identities

If you see a signature sig such that

verify(pk, msg, sig)==true,

think of it as

pk says, “[msg]”.

Why?

Because to “speak for” pk, you must know the

matching secret key sk.

Cryptocurrency Technologies Cryptography and Cryptocurrencies

19

How to Create a new Identity

Create a new, random key-pair (sk, pk)

– pk is the public “name” you can use�

[usually better to use Hash(pk)]

– sk lets you “speak for” the identity

You control the identity,

because only you know sk.

If pk “looks random”, nobody needs to know who

you are.

Decentralized Identity Management

By creating a key-pair, �
anybody can make a new identity at any time.

Make as many as you want!

No central point of coordination.

These identities are called addresses in Bitcoin.

Cryptocurrency Technologies Cryptography and Cryptocurrencies

20

Identities and Privacy

Addresses are not directly connected to real-
world identity.

But observer can link together an address’
activity over time, and make inferences about
real identity.

We will talk later about privacy in Bitcoin . . .

Intro to Cryptography and Cryptocurrencies

•  Cryptographic Hash Functions

•  Hash Pointers and Data Structures

– Block Chains

– Merkle Trees

•  Digital Signatures

•  Public Keys and Identities

•  Let’s design us some Digital Cash!

Cryptocurrency Technologies Cryptography and Cryptocurrencies

21

Vanilla Cryptocurrency Ver. 0.0

GoofyCoin

Goofy can create new Coins

CreateCoin [uniqueCoinID]

signed by pkGoofy

New coin belong to me.

Cryptocurrency Technologies Cryptography and Cryptocurrencies

22

Goofy can spend the Coins

CreateCoin [uniqueCoinID]

signed by pkGoofy

Pay to pkAlice : H()

signed by pkGoofy

Alice owns it now.

The Recipient can pass on the Coin again

CreateCoin [uniqueCoinID]

signed by pkGoofy

Pay to pkAlice : H()

signed by pkGoofy

Pay to pkBob : H()

signed by pkAlice

Bob owns it now.

Cryptocurrency Technologies Cryptography and Cryptocurrencies

23

The Recipient can also double-spend the coin!

CreateCoin [uniqueCoinID]

signed by pkGoofy

Pay to pkAlice : H()

signed by pkGoofy

Pay to pkBob : H()

signed by pkAlice

Let’s use the coin again.

Pay to pkCharles : H()

signed by pkAlice

Double-Spending

Main design challenge in all digital currencies

Cryptocurrency Technologies Cryptography and Cryptocurrencies

24

Vanilla Cryptocurrency Ver. 1.0

ScroogeCoin

Record Transactions in central Block Chain

trans

prev: H()

trans

prev: H()

trans

prev: H()

H()

transID:73
transID:72
transID:71

Scrooge publishes a history of all transactions

(a block chain, signed by Scrooge)

optimization: put multiple transactions in the same block

Cryptocurrency Technologies Cryptography and Cryptocurrencies

25

Creating new Coins in ScroogeCoin

transID: 73 type:CreateCoins

CreateCoins transaction creates new coins

coins created

num value
 recipient

0
 3.2
 0x...

1
 1.4
 0x...

2
 7.1
 0x...

coinID 73(0)

coinID 73(1)

coinID 73(2)

Valid, because I said so!

Pay Coins in ScroogeCoin

PayCoins transaction consumes (and destroys) some coins,

and creates new coins of the same total value

transID: 73 type: PayCoins

coins created

num value
 recipient

0
 3.2
 0x...

1
 1.4
 0x...

2
 7.1
 0x...

consumed coinIDs:

68(1), 42(0), 72(3)

signatures

Valid if:

•  consumed coins valid,

•  not already consumed,

•  total value out = total value in,

and

•  signed by owners of all consumed

coins

Cryptocurrency Technologies Cryptography and Cryptocurrencies

26

Coins in ScroogeCoin are Immutable

PayCoins transaction consumes (and destroys) some coins,

and creates new coins of the same total value

transID: 73 type: PayCoins

coins created

num value
 recipient

0
 3.2
 0x...

1
 1.4
 0x...

2
 7.1
 0x...

consumed coinIDs:

68(1), 42(0), 72(3)

signatures

Coins are Immutable:

 They cannot be

•  transferred,

•  subdivided, or

•  combined

How to deal with Immutable Coins

Coins are Immutable:

 They cannot be

•  transferred,

•  subdivided, or

•  combined

But: You can get the
same effect by using
transactions.

Example - Subdivide Coin: are Immutable:

1.  create new transaction

2. consume (destroy) your coin

3.  pay out two new coins to yourself

Cryptocurrency Technologies Cryptography and Cryptocurrencies

27

The Problem with ScroogeCoin

Don’t worry, I’m honest.

Crucial question:

Can we descroogify the
currency, and operate without
any central, trusted party?

