
Cryptocurrency Technologies Mechanics of Bitcoin

1

Mechanics of Bitcoin

•  Bitcoin Transactions

•  Bitcoin Scripts

•  Applications of Bitcoin Scripts

•  Bitcoin Blocks

•  The Bitcoin Network

•  Limitations and Improvements

Mechanics of Bitcoin

•  Bitcoin Transactions

•  Bitcoin Scripts

•  Applications of Bitcoin Scripts

•  Bitcoin Blocks

•  The Bitcoin Network

•  Limitations and Improvements

Cryptocurrency Technologies Mechanics of Bitcoin

2

An account-based Ledger (not Bitcoin)

Create 25 coins and credit to AliceASSERTED BY MINERS

Transfer 17 coins from Alice to BobSIGNED(Alice)

Transfer 8 coins from Bob to CarolSIGNED(Bob)

Transfer 5 coins from Carol to AliceSIGNED(Carol)

SIMPLIFICATION: only one transaction per block

time

Transfer 15 coins from Alice to DavidSIGNED(Alice)

might need
to scan
backwards
until
genesis!

is this
valid?

A transaction-based Ledger (Bitcoin)

Inputs: Ø

 Outputs: 25.0→Alice

Inputs: 1[0]

Outputs: 17.0→Bob, 8.0→Alice

SIGNED(Alice)

is this
valid?

finite scan
to check
for validity

Inputs: 2[0]

Outputs: 10.0→Carol, 7.0→Bob

SIGNED(Bob)

Inputs: 2[1]

Outputs: 6.0→David, 2.0→Alice

SIGNED(Alice)

we implement this
with hash pointers
change

address

1

2

3

4

SIMPLIFICATION: only one transaction per block

time

Cryptocurrency Technologies Mechanics of Bitcoin

3

Merging Value

Inputs: ...

Outputs: 17.0→Bob, 8.0→Alice

SIGNED(Alice)

Inputs: 1[1]

Outputs: 6.0→Carol, 2.0→Bob

SIGNED(Alice)

Inputs: 1[0], 2[1]

Outputs: 19.0→Bob

SIGNED(Bob)

..

.

..

.

1

2

3

SIMPLIFICATION: only one transaction per block

time

Joint Payments

Inputs: ...

Outputs: 17.0→Bob, 8.0→Alice

SIGNED(Alice)

Inputs: 1[1]

Outputs: 6.0→Carol, 2.0→Bob

SIGNED(Alice)

Inputs: 2[0], 2[1]

Outputs: 8.0→David

SIGNED(Carol), SIGNED(Bob)

..

.

..

.

two signatures!

1

2

3

SIMPLIFICATION: only one transaction per block

time

Cryptocurrency Technologies Mechanics of Bitcoin

4

The Real Deal: a Bitcoin Transaction

{
 "hash":"5a42590fbe0a90ee8e8747244d6c84f0db1a3a24e8f1b95b10c9e050990b8b6b",
 "ver":1,
 "vin_sz":2,
 "vout_sz":1,
 "lock_time":0,
 "size":404,
 "in":[
 {
 "prev_out":{
 "hash":"3be4ac9728a0823cf5e2deb2e86fc0bd2aa503a91d307b42ba76117d79280260",
 "n":0
 },
 "scriptSig":"30440..."
 },
 {
 "prev_out":{
 "hash":"7508e6ab259b4df0fd5147bab0c949d81473db4518f81afc5c3f52f91ff6b34e",
 "n":0
 },
 "scriptSig":"3f3a4ce81...."
 }
],
 "out":[
 {
 "value":"10.12287097",
 "scriptPubKey":"OP_DUP OP_HASH160 69e02e18b5705a05dd6b28ed517716c894b3d42e
OP_EQUALVERIFY OP_CHECKSIG"
 }
]
}

input(s)

metadata

output(s)

The Real Deal: Transaction Metadata

{�
 "hash":"5a42590...b8b6b", �
 "ver":1, �
 "vin_sz":2, �
 "vout_sz":1, �
 "lock_time":0, �
 "size":404,

...

}

housekeeping

housekeeping

transaction hash

“not valid before”
 more on lock_time later...

Cryptocurrency Technologies Mechanics of Bitcoin

5

The Real Deal: Transaction Inputs

"in":[
 {

 "prev_out":{
 "hash":"3be4...80260",

 "n":0

 },
 "scriptSig":"30440....3f3a4ce81"

 },
 ...

],

signature

previous

transaction

(more inputs)

The Real Deal: Transaction Outputs

 "out":[
 {

 "value":"10.12287097",

 "scriptPubKey":"OP_DUP OP_HASH160 69e...3d42e

OP_EQUALVERIFY OP_CHECKSIG"

 },

 ...

]

output
value

recipient
address??

(more
outputs)

more on this soon...

Cryptocurrency Technologies Mechanics of Bitcoin

6

Mechanics of Bitcoin

•  Bitcoin Transactions

•  Bitcoin Scripts

•  Applications of Bitcoin Scripts

•  Bitcoin Blocks

•  The Bitcoin Network

•  Limitations and Improvements

Output “Adresses” are really Scripts

OP_DUP
OP_HASH160
69e02e18...
OP_EQUALVERIFY OP_CHECKSIG

Cryptocurrency Technologies Mechanics of Bitcoin

7

Input “Adresses” are also Scripts

OP_DUP
OP_HASH160
69e02e18...
OP_EQUALVERIFY OP_CHECKSIG

30440220...
0467d2c9…

Sig-script

PubKey-script

TO VERIFY: Concatenated script must execute completely with no errors

Why Scripts?!

Redeem previous transaction by signing with correct key

“This can be redeemed by a signature from the owner of
address X”

Recall: address X is hash of public key

What is public key associated with X?!

“This can be redeemed by a public key that hashes to X,
along with a signature from the owner of that public key”

Cryptocurrency Technologies Mechanics of Bitcoin

8

Bitcoin Scripting Language (“Script”)

Design “goals”:

–  Built for Bitcoin (inspired by Forth)

–  Simple, compact

–  Stack-based

– No looping

–  Support for cryptography

–  Limits on time/memory

– Not Turing complete!

image via Jessie St. Amand

I am not
impressed

Bitcoin Script Execution Example

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG

<sig>

✓
<pubKey>

<pubKey>

<pubKeyHash?>

<pubKeyHash>

true

OP_DUP
OP_HASH160
69e02e18...
OP_EQUALVERIFY OP_CHECKSIG

30440220...
0467d2c9…

Cryptocurrency Technologies Mechanics of Bitcoin

9

Bitcoin Script Instructions

256 opcodes total (15 disabled, 75 reserved)

• Arithmetic

•  If/then

•  Logic/data handling

• Crypto!

the Bitcoin language and one has to deal with it by putting an extra dummy variable onto the stack.

The bug was in the original implementation, and the costs of fixing it are much higher than the

damage it causes, as we’ll see later in Section 3.5. At this point, this bug is considered a feature in

Bitcoin, in that it’s not going away.

OP_DUP Duplicates the top item on the stack

OP_HASH160 Hashes twice: first using SHA-256 and then RIPEMD-160

OP_EQUALVERIFY Returns true if the inputs are equal. Returns false and marks the
transaction as invalid if they are unequal

OP_CHECKSIG Checks that the input signature is a valid signature using the input public
key for the hash of the current transaction

OP_CHECKMULTISIG Checks that the k signatures on the transaction are valid signatures from
k of the specified public keys.

Figure 3.6 a list of common Script instructions and their functionality.

Executing a script. To execute a script in a stack-based programming language, all we’ll need is a stack

that we can push data to and pop data from. We won’t need any other memory or variables. That’s

what makes it so computationally simple. There are two types of instructions: data instructions and

opcodes. When a data instruction appears in a script, that data is simply pushed onto the top of the

stack. Opcodes, on the other hand, perform some function, often taking as input data that is on top of

the stack.

Now let’s look at how the Bitcoin script in Figure 3.5 is executed. Refer to Figure 3.7, where we show

the state of the stack after each instruction. The first two instructions in this script are data

instructions — the signature and the public key used to verify that signature — specified in the

scriptSig component of a transaction input in the redeeming transaction. As we mentioned, when we

see a data instruction, we just push it onto the stack. The rest of the script was specified in the

scriptPubKey component of a transaction output in the referenced transaction.

First we have the duplicate instruction, OP_DUP, so we just push a copy of the public key onto the top

of the stack. The next instruction is OP_HASH160, which tells us to pop the top value, compute its

cryptographic hash, and push the result onto the top of the stack. When this instruction finishes

executing, we will have replaced the public key on the top of the stack with its hash.

81

OP_CHECKMULTISIG

Built-in support for joint signatures

Specify n public keys

Specify t

Verification requires t signatures

Incidentally: There is a bug in the
multisig implementation.

Extra data value popped from the
stack and ignored

Cryptocurrency Technologies Mechanics of Bitcoin

10

Scripts in Practice (as of 2015)

Theory: Scripts let us specify arbitrary conditions that
must be satisfied to spend coins.

•  99.9% are simple signature checks

•  ~0.01% are MULTISIG
•  ~0.01% are Pay-to-Script-Hash

•  Remainder are errors, proof-of-burn

Most nodes whitelist known scripts

Q: Is any of this used in practice?

More on this soon

Proof-of-Burn

OP_RETURN
<arbitrary data>

this script can never be redeemed ☹

Uses for Proof-of-Burn:

•  Destroy coins and transfer them to alternative currency

•  Add arbitrary data to block chain

Cryptocurrency Technologies Mechanics of Bitcoin

11

Should Senders specify Scripts?

Big Box Store
I’m ready to pay for my
purchases!

Cool! Well we’re using
MULTISIG now, so include
a script requiring 2 of our
3 account managers to
approve. Don’t get any of
those details wrong.
Thanks for shopping at Big
Box!

?

Pay-to-Script-Hash (P2SH) Workflow

Bob

•  creates a redeem script with whatever script he wants

•  hashes the redeem script

•  sends redeem script hash to Alice.

Alice

•  creates a P2SH-style output containing Bob’s redeem script hash.

When Bob wants to spend the output

•  provides his signature along with the redeem script in the

signature script.

P2P network then

•  ensures the redeem script hashes to the same value as the script

hash Alice put in her output;

•  it then processes the redeem script exactly as it would if it were

the primary pubkey script,

•  letting Bob spend the output if the redeem script does not return

false.

Cryptocurrency Technologies Mechanics of Bitcoin

12

Solution: Use the Hash of Redemption Script

OP_HASH160
<hash of redemption script>
OP_EQUAL

<signature>
<<pubkey> OP_CHECKSIG>

“Pay to Script Hash”

<signature>

<pubkey>
OP_CHECKSIG

Pay-to-Script-Hash

Big Box Store
I’m ready to pay for my
purchases!

Great! Here’s our address:
0x3454

Cryptocurrency Technologies Mechanics of Bitcoin

13

Mechanics of Bitcoin

•  Bitcoin Transactions

•  Bitcoin Scripts

•  Applications of Bitcoin Scripts

•  Bitcoin Blocks

•  The Bitcoin Network

•  Limitations and Improvements

Example 1: Escrow Transactions

PROBLEM: Alice wants to buy online from Bob.
Alice doesn’t want to pay until after Bob ships.

Bob doesn’t want to ship until after Alice pays.

Pay x to 2-of-3 of Alice, Bob, Judy

(MULTISIG)

SIGNED(ALICE)

Bob
Alice

To: Alice

From: Bob

Pay x to Bob

SIGNED(ALICE, BOB)

(normal case)

Pay x to Alice

SIGNED(ALICE, JUDY)

(disputed case)

Judy

Cryptocurrency Technologies Mechanics of Bitcoin

14

Example 2: Green Addresses

Alice
 Bob
PROBLEM: Alice wants to pay Bob.

Bob can’t wait 6 verifications to guard against

double-spends, or is offline completely.

Pay x to Bob, y to Bank

SIGNED(BANK)

Faraday
cage

It’s me, Alice! Could
you make out a green

payment to Bob?

Bank

No double spend

004 days since last double spend!

Example 3: Efficient Micro-Payments

Alice
 Bob

PROBLEM: Alice wants to pay Bob for each
minute of phone service. She doesn’t want to

incur a transaction fee every minute.

Input: x; Pay 01 to Bob, 99 to Alice

SIGNED(ALICE)___________

Input: x; Pay 02 to Bob, 98 to Alice

SIGNED(ALICE)___________

Input: x; Pay 03 to Bob, 97 to Alice

SIGNED(ALICE)___________

Input: x; Pay 04 to Bob, 96 to Alice

SIGNED(ALICE)___________

Input: x; Pay 42 to Bob, 58 to Alice

SIGNED(ALICE)___________

...

I’m done!

I’ll

publish!

all of these
could be
double-
spends!

Input: y; Pay 100 to Bob/Alice (MULTISIG)

SIGNED(ALICE)

Input: x; Pay 42 to Bob, 58 to Alice

SIGNED(ALICE) SIGNED(BOB)

Cryptocurrency Technologies Mechanics of Bitcoin

15

Example 3: Efficient Micro-Payments

Alice
 Bob

Input: x; Pay 42 to Bob, 58 to Alice

SIGNED(ALICE)___________

Input: y; Pay 100 to Bob/Alice (MULTISIG)

SIGNED(ALICE)

What if Bob never signs??

Input: x; Pay 100 to Alice, LOCK until time t

SIGNED(ALICE) SIGNED(BOB)

Alice demands a timed refund
transaction before starting

lock_time

{�
 "hash":"5a42590...b8b6b", �
 "ver":1, �
 "vin_sz":2, �
 "vout_sz":1, �
 "lock_time":315415, �
 "size":404,

...

}

Block index or real-world
timestamp before which this
transaction can’t be published

Cryptocurrency Technologies Mechanics of Bitcoin

16

More advanced Scripts

Multiplayer Lotteries

Coin-swapping Protocols

“Smart Contracts”

Mechanics of Bitcoin

•  Bitcoin Transactions

•  Bitcoin Scripts

•  Applications of Bitcoin Scripts

•  Bitcoin Blocks

•  The Bitcoin Network

•  Limitations and Improvements

Cryptocurrency Technologies Mechanics of Bitcoin

17

1.  Requiring consensus for each transaction
separately would reduce transaction acceptance
rate.

2.  Hash-chain of blocks is much shorter.

3.  Faster to verify history.

Bitcoin Blocks

Q: Why bundle transactions together?

Bitcoin Block Structure

Hash tree �
(Merkle tree)

of transactions �
in each block

Hash chain of blocks

trans: H()

prev: H()

trans: H()

prev: H()

trans: H()

prev: H()

H() H()

H() H()
 H() H()

transaction
 transaction
 transaction
 transaction

Cryptocurrency Technologies Mechanics of Bitcoin

18

The Real Deal: a Bitcoin Block

{

 "hash":"00000000000000001aad2...",

 "ver":2,

 "prev_block":"00000000000000003043...",

 "time":1391279636,

 "bits":419558700,

 "nonce":459459841,

 "mrkl_root":"89776...",

 "n_tx":354,

 "size":181520,

 "tx":[

 ...

],

 "mrkl_tree":[

 "6bd5eb25...",

 ...

 "89776cdb..."

]

}

transaction data

block header

The Real Deal: a Bitcoin Block Header

{

 "hash":"00000000000000001aad2...",

 "ver":2,

 "prev_block":"00000000000000003043...",

 "time":1391279636,

 "bits":419558700,

 "nonce":459459841,

 "mrkl_root":"89776...",

 ...

}

hashed
during
mining

not
hashed

hash

 timestamp

 indication of difficulty

 chosen nonce

 root of trans. tree

Cryptocurrency Technologies Mechanics of Bitcoin

19

coinbase Transaction

New coins are created with coinbase transaction:

•  Single input and single output

•  Does not redeem previous output

–  Hash pointer is null

•  Output value is miner’s revenue from block:

–  output value = mining reward + transaction fees

–  transaction fees come from all transactions in block

•  Special coinbase parameter

–  contains arbitrary value

The Real Deal: coinbase Transaction

"in":[�
 {�
 "prev_out":{�
 "hash":"000000.....0000000", �
 "n":4294967295�
 },

 "coinbase":”…”

 }

] �
"out":[

 {�
 "value":"25.03371419", �
 "scriptPubKey":"OPDUP OPHASH160 ... ”

 }

]

arbitrary

redeeming
nothing

Null hash pointer

First ever coinbase parameter:

“The Times 03/Jan/2009 Chancellor
on brink of second bailout for
banks”

block reward + transaction fees

Cryptocurrency Technologies Mechanics of Bitcoin

20

See for yourself!

See for yourself!

Cryptocurrency Technologies Mechanics of Bitcoin

21

Mechanics of Bitcoin

•  Bitcoin Transactions

•  Bitcoin Scripts

•  Applications of Bitcoin Scripts

•  Bitcoin Blocks

•  The Bitcoin Network

•  Limitations and Improvements

Bitcoin P2P Network

The network:

– Ad-hoc protocol (runs on TCP port 8333)

– Ad-hoc network with random topology

– All nodes are equal

– New nodes can join at any time

– Forget non-responding nodes after 3 hr

Participants can

– publish transactions

– insert transactions into block chain

Cryptocurrency Technologies Mechanics of Bitcoin

22

Joining the Bitcoin P2P Network

1

6

4

7

3

5

2

8

Hello World! I’m
ready to Bitcoin!

getaddr()
1, 7
 getaddr()
getaddr()

Transaction Propagation (Flooding)

1

6

4

7

3

5

2

8

New
tx!

A→B

A→B

A→B

A→B

A→B

A→B

A→B

A→B

A→B

A→B

A→B

Already
heard
that!

Cryptocurrency Technologies Mechanics of Bitcoin

23

Should I relay a proposed Transaction?

• Transaction valid with current block chain

•  (default) script matches a whitelist

– Avoid unusual scripts

• Haven’t seen before

– Avoid infinite loops

• Doesn’t conflict with others I’ve relayed

– Avoid double-spends

Sanity checks only...

Some nodes may ignore them!

Nodes may differ on Transaction Pool

1

6

4

7

3

5

2

8

A→B

A→B

A→B

A→B

A→B

A→B

New
tx!

A→C

A→C

A→C

A→B

A→C

A→C

A→B

A→C

Cryptocurrency Technologies Mechanics of Bitcoin

24

Race Conditions

Transactions or blocks may conflict

– This is called “race condition”

– Default behavior: accept what you hear first

– Tie broken by whoever mines next block

• picks only one transaction/block

– Network position matters

– Miners may implement other logic!

Orphaned Blocks

Cryptocurrency Technologies Mechanics of Bitcoin

25

Block Propagation

Propagation of blocks is nearly identical:

Relay a new block when you hear it if:

1.  Block meets the hash target

2.  Block has all valid transactions

–  Run all scripts, even if you wouldn’t relay

3.  Block builds on current longest chain

–  Avoid forks

Latency of Flooding Algorithm

Source: Yonatan Sompolinsky and Aviv Zohar: “Accelerating Bitcoin’s Transaction Processing” 2014

Cryptocurrency Technologies Mechanics of Bitcoin

26

Size of the Network

Impossible to measure exactly

•  Estimates-up to 1M IP addresses/month

•  Only about 5-10k “full nodes”

–  Permanently connected

–  Fully-validating

•  This number may be dropping!

Q: How big is the Network?

Fully-validating Nodes:

•  Permanently connected

•  Store entire block chain

•  Hear and forward every node/

transaction

Storage Costs

Cryptocurrency Technologies Mechanics of Bitcoin

27

Unspent Transaction Output fits in RAM

Thin/SPV Clients (not fully-validating)

Idea: don’t store everything

–  Store block headers only

Request transactions as needed

–  To verify incoming payment

Trust fully-validating nodes

1000x cost savings!

Cryptocurrency Technologies Mechanics of Bitcoin

28

Software Diversity

• About 90% of nodes run “Core Bitcoin” (C++)

–  Some are out of date versions

• Other implementations running successfully

– BitcoinJ (Java)

– Libbitcoin (C++)

– btcd (Go)

•  “Original Satoshi client”

Mechanics of Bitcoin

•  Bitcoin Transactions

•  Bitcoin Scripts

•  Applications of Bitcoin Scripts

•  Bitcoin Blocks

•  The Bitcoin Network

•  Limitations and Improvements

Cryptocurrency Technologies Mechanics of Bitcoin

29

Hard-coded Limits in Bitcoin

•  10 min. average creation time per block

•  1 M bytes in a block

•  20,000 signature operations per block

•  100 M satoshis per bitcoin

•  23M total bitcoins maximum

•  50,25,12.5... bitcoin mining reward

These affect
economic

balance of
power too

much to
change now

Throughput Limits in Bitcoin

Blocks are limited to 1 M bytes each (10 min)

With

at least 250 bytes/transaction

this gives about

7 transactions/sec!

Compare to:

• VISA: 2,000-10,000 transactions/sec

• PayPal: 50-100 transaction/sec

Cryptocurrency Technologies Mechanics of Bitcoin

30

Cryptographic Limits in Bitcoin

1.  Only 1 signature algorithm (ECDSA/P256)

2.  Hard-coded hash functions

Crypto primitives might break by 2040…

Changing the Protocol: Hard vs. Soft Forks

Q: So, you want to change the protocol. �
What to do about “old” nodes?

Hard Fork: Change introduces new features that were previously
considered invalid.

Cryptocurrency Technologies Mechanics of Bitcoin

31

“Hard-forking” Changes to Bitcoin

1

6

4

7

3

5

2

8

I found a
nifty new
block!

Block 24

Block 24

Block 24

Block 24

Block 24

Block 23

Block 23

Block 23

Block 23

Block 23

Block 23

Block 23

Block 23

24

24

24

24

That’s
crazy
talk!!

That’s
crazy
talk!!

PROBLEM: Old nodes will never catch up

Changing the Protocol: Hard vs. Soft Forks

Q: So, you want to change the protocol. �
What to do about “old” nodes?

Hard Fork: Change introduces new features that were previously
considered invalid.

Soft Fork: Change introduces new features that make validation
rules stricter.

Cryptocurrency Technologies Mechanics of Bitcoin

32

Soft Forks

Observation: We can add new features that only limit
the set of valid transactions.

•  Need majority of nodes to enforce new rules.

•  Old nodes will approve.

RISK: Old nodes might mine now-invalid blocks

Soft Fork Example: Pay-to-Script-Hash

OP_HASH160
<hash of redemption script>
OP_EQUAL

<signature>
<<pubkey> OP_CHECKSIG>

Old nodes will just approve the hash, not run the embedded script.

Cryptocurrency Technologies Mechanics of Bitcoin

33

Soft Fork Possibilities

•  New signature schemes

•  Extra per-block metadata

–  Stricter formatting of the coinbase parameter

–  Add Merkle Tree of UTXOs (Unspent Transaction
Outputs) in each block

Hard Forks

• New op codes

• Changes to size limits

• Changes to mining rate

• Many small bug fixes (e.g. MULTI-SIG)

Currently very unlikely to happen.

We will revisit this when we discuss altcoins.

