CPSC 410/611 : Operating Systems

Dynamic Memory Management

e The Linux Perspective

e Allocating memory: The Interface
e Buddy System

e Slab Allocation

® Reading: Silberschatz (8" ed.), Chapters 9.8 and 21.6

Memory Areas

Memory areas (regions) are intervals of legal addresses.

logical
address
space
vm_start vm_end
vm_next
T T
memory
)) T) regions
|
mmap mmap_cache
T N
memory
descriptor
J

Memory Management: Dynamic Memory
Management

CPSC 410/611 : Operating Systems

The Process Address Space

e When does new memory get allocated?
- Process stack grows

- Process “creates” (attaches) to shared memory segment
(shmat ())

Process expands heap (malloc ())
New process gets created (fork())

New program gets loaded into memory (execve ())

Map a file to memory (mmap ())

e Create new address interval:
- Kernel uses do mmap () call.
- Available through system call mmap () in user space.

Allocating Pages

e Requesting frames:

struct page * alloc pages (uint gfp mask, uint order)

e Requesting pages (logical addresses):

ulong get free pages(uint gfp mask, uint order)

e In both cases:
- request allocates 2°79¢r pages/frames
- gfp_mask specifies details about request:
® memory zone
e behavior of allocator (blocking/unblocking request, etc.)
® e.g. GFP_KERNEL, GFP_ATOMIC, GFP_DMa, etc.

Memory Management: Dynamic Memory

Management

CPSC 410/611 : Operating Systems

Allocation at Different Levels

alloc pages() and get free pages|()
- allocate pages, at low level
- useful to allocate contiguous pages/frames.

byte-sized allocations:
- kmalloc (size, gfp mask)

e allocate physically contiguous sequence
of bytes

- vmalloc (size, gfp mask)

e allocate virtually contiguous sequence
of bytes

explicit user-level allocation:
- malloc(size)
e allocate virtually contiguous sequence of bytes at user level

How does this all work?

[Buddy System!

Slab Allocator
(+ caching)

Memory Management: Dynamic Memory

Management

CPSC 410/611 : Operating Systems

Naive Allocation in Action

Buddy System Allocation

e Allocation:
- Increase size of request to next power of 2*.
- Look up block in free lists.
- If exists, allocate.

- If none exists, split next larger block in half,
put first half (the “buddy”) on free list, and
return second half.

e De-Allocation:

Harry Markowitz .
1927- - Return segment to free list.

1990 Nobel Memorial - Check if buddy is free. If so, coalesce.
Prize in Economics

e For details, see lecture.

(*) For case of binary buddy system.

References: Donald Knuth: The Art of Computer Programming Volume 1: Fundamental
Algorithms. Second Edition (Reading, Massachusetts: Addison-Wesley, 1997), pp. 435-455.
ISBN 0-201-89683-4

Memory Management: Dynamic Memory
Management

CPSC 410/611 : Operating Systems

Buddy System in Action

Slab Allocation

First described by Jeff Bonwick for the SunOS kernel.
Currently used in Linux and other kernels.
Key observations:
- Kernel memory often used for allocated for a finite set of
objects, such as file descriptors and other common structures.
- Amount of time required to initialize a regular object in the
kernel exceedes the amount of time required to allocate and
de-allocate it.
Conclusion:
- Instead of freeing the memory back to a global pool, have the
memory remain initialized for its intended purpose.
References: "The Slab Allocator: An Object-Caching Kernel
Memory Allocator (1994)”

Memory Management:
Management

Dynamic Memory

CPSC 410/611 : Operating Systems

Slab Allocation (II)

Set of objects pre-allocated
Marked as free

When needed, assign a free one and mark as used

No free ones available?
- allocate a new slab

- slab states (full, empty, partial)

- fill partial slab first
Advantages:
- no fragmentation

- memory requests
satisfied quickly

Cache_chain
Emem_cach%

slabs_full

hea

mem_cache <>(slabs_panial

slabs_empty

Emem_cach%

(Cslab)—(Cpage J~{(abecl)

Memory Management: Dynamic Memory

Management

