IETF Integrated Services

- Specification of Guaranteed Quality of Service (RFC 2212)
- Resource Reservation Protocol (RFC 2205)
 - Example of a real-time connection establishment protocol.
- The Use of RSVP with IETF Integrated Services.

Specification of Guaranteed Quality of Service (RFC 2212)

- The “fluid model” of service
- The traffic specification (TSPEC)
- The desired service specification (RSPEC)
- Specifying a service module (subnet, switch, trunk, …)
- Policing vs. reshaping
Introduction

- Guaranteed QoS is independent from connection establishment protocol or flow identification mechanism
 - RSVP
 - manual configuration
 - SNMP
- However: Guaranteed QoS only possible if every service element supports in the path supports it.
- Guaranteed service guarantees:
 - End-to-end delays
 - Queue overflows
- Guaranteed service does not guarantee:
 - Jitter
- Guaranteed service as extreme form of delay control for networks.

Fluid Service Model

- Definition: The fluid model at service rate R is the service that would be provided by a dedicated wire of bandwidth R between the source and the receiver.
- Note: In the fluid model, the flow's service is completely independent of that of any other flow!
- Algorithms and implementations:
 - Weighted Fair Queueing (WFQ) [Demers, Keshav, Shenker]
 - Jitter EDD [Verma, Zhang, Ferrari]
 - Virtual Clock [L. Zhang]
- General Definition [Goyal, Lam, Vin, NOSSDAV’95]:
 \[
 GRC^i(p_j^0) = 0 \\
 CRC^i(p_j^j) = \max\{A'(p_j^j), GRC^i(p_j^{j-1})\} + \frac{t_j}{r_j}, \quad j \geq 1 \\
 d_j \leq GRC^k(p_j^j) + \alpha^k - A'(p_j^j)
 \]
Delays in the Fluid Service Model

- Observation: The delay of a flow bounded by a token bucket \((r,b)\) and being served by a line with bandwidth \(R\) is bounded by \(b/R\), as long as \(R \geq r\).
- Problem: Guaranteed service at rate \(R\) (\(R\) now is a share of overall bandwidth) approximates behavior of line with bandwidth \(R\).
- Network element must ensure that local packet delay is less than \(b/R+C/R+D\), where
 - \(C\): rate-dependent error term.
 - Delay a datagram may experience due to the rate parameters of the flow.
 - Example: Serialization of datagram into ATM cells, with cells sent at frequency \(1/r\).
 - \(D\): rate-independent error term (mostly occasional gaps in service)
 - Example: How long does a flow’s data have to wait in a slotted network, once the data is ready.

Traffic Specification (TSPEC)

- TSPEC has form of token bucket plus a peak rate, a minimum policed unit, and a maximum datagram size.
 \((b,r)\): token bucket with bucket depth \(b\) and token rate \(r\).
 \(p\): maximum rate at which bursts can be injected into network.
 \(m\): minimum policed unit. All datagrams smaller than \(m\) will be counted as having size \(m\) for policing purposes.
 \(M\): maximum datagram size. Flow is rejected if its maximum datagram size is larger than MTU of link.
Desired Service Spec (RSPEC)

- **R**: rate
 - \(R \) must be greater or equal to \(r \)
 - larger \(R \) reduces queueing delays
- **S**: slack term
 - Difference between the desired delay and the delay obtained by using a reservation level \(R \).
 - Can be used by network element to reduce resource reservation.

Exported Information

- Network element’s implementation of guaranteed service is characterized by the two error terms:
 - **C**: rate-dependent. (function of transmission rate)
 - **D**: rate-independent
- End-to-End sums of \(C \) and \(D \) (\(C_{\text{tot}} \) and \(D_{\text{tot}} \)) can be used in endnodes to compute maximal queueing delays.
- Partial sums \(C_{\text{sum}} \) and \(D_{\text{sum}} \) from most recent reshaping point downstream can be used to determine buffer requirement to assure no datagram loss.
Policing / Reshaping

- Policing:
 - at edge of network
 - traffic may exceed TSPEC
 - policing makes sure that \(b(I) \leq M + \min(pI, rI+b-M) \)
 - non-conforming datagrams should be treated as best-effort datagrams. (how?)

- Reshaping:
 - inside the network
 - delay non-conformant datagrams until they are within their TSPEC
 - amount of buffering required: \(b + C_{\text{sum}} + (D_{\text{sum}} * r) \)

Resource ReSerVation Protocol (RSVP) (RFC 2205)

- RSVP as an Internet control protocol.
- RSVP itself not a routing protocol.
- RSVP supports unicast and many-to-many multicast applications.
- RSVP makes reservations for unidirectional data flow.
- RSVP is designed to handle large multicast groups, dynamic group membership, and heterogeneous receiver requirements => receiver-initiated QoS requests.
- “Soft” state
- Reservation setup = admission control + policy control
- Reservation “styles”
Reservation Model

- Reservation request: flow-descriptor = flow-spec + filter-spec
 - flow-spec specifies the QoS
 - RSPEC
 - TSPEC
 - filter-spec defines the set of data packets (the “flow”) to receive the QoS specified by flow-spec
 - generally: arbitrary subset of packets in given session
 - presently: filter spec defined in terms of sender IP address and port number SrcPort.
 - Problems:
 - segmentation (?)
 - IPv6 headers
 - IP-level security

RSVP Requests

- RSVP request messages originate at receivers and are passed to senders.
- Each intermediate node performs the following two operations:
 - 1. Make a reservation on link. (admission control and policy control)
 - if fails, return error message to appropriate receiver.
 - details of admission control are link-layer technology specific.
 - 2. Forward the request upstream.
 - Propagate request to appropriate senders.
 - Requests may be merged (remember heterogeneous requirements!)
- Basic reservation model is “one-pass”
 - Receiver sends request upstream, and each node in path either accepts or rejects.
 - Problem: no easy way for a receiver to find out the resulting end-to-end service.
- Solution: One-Pass-With-Advertising (OPWA)
Reservation Styles

- Reservation request includes a set of options that are collectively called reservation “style”.

- Treatment of reservations for different senders: shared vs. distinct.
- Explicit list of selected senders vs. “wildcards”.

- Shared reservations appropriate for multicast applications where multiple data sources are unlikely to transmit simultaneously.

Protocol Mechanism

- Two fundamental messages: RESV and PATH.

- RESV messages flow from receiver hosts to senders.
 - Create and maintain “reservation state” in each node.

- Each RSVP sender host transmits PATH messages downstream along unicast/multicast routes provided by routing subsystem.
 - PATH message contains:
 - previous hop address
 - sender template: describes format of packets that sender will originate
 - sender TSPEC
 - ADSPEC for OPWA: may be passed to local admission control.

- PATH messages sent with same source/destination addresses as data (for routing through non-RSVP clouds).
Merging Flow Specs; Teardown

- RESV message carries “largest” flow spec requested by all hops downstream.
- Flowspecs are opaque to RSVP: rules for comparing flowspecs are outside of RSVP.
- PATHTEAR vs. RESVTEAR
- teardown messages not transmitted reliably

Soft State

- RSVP maintains “soft state” in routers and hosts.
- Soft state is created and periodically refreshed by PATH and RESV messages.
 - State is deleted if no new matching refresh messages arrive.
 - State can also be deleted with “teardown” messages.
- PATH and RESV messages are idempotent.
- Route change: PATH message will initialize state on new route, and future RESV messages will initialize reservation state there.
 - State on old route will eventually time out.
- Periodic retransmission to offset non-reliability of IP.
- Propagation of retransmitted control messages only if modify state.