Network Calculus:

- Reference Material:

- Network Calculus as system theory for computer networks.

- Some mathematical background

- Arrival Curves

- Service Curves

- Network Calculus Basics

Simple Electronic Circuit: RC Cell

- Output $y(t)$ of this circuit is convolution of input $x(t)$ and impulse response $h(t)$ of circuit.

- Impulse response:

 $h(t) = \frac{1}{RC} e^{-t/RC} \quad t \geq 0$

- Output:

 $y(t) = (h \ast x)(t) = \int_0^t h(t-s)x(s)ds$
Greedy Shaper

- A shaper forces an input traffic flow \(x(t) \) to have an output \(y(t) \) which adheres to an envelope \(\sigma \).

- The output function \(y(t) \) can be derived as follows:

\[
y(t) = (\sigma \otimes x)(t) = \inf_{0 \leq s \leq t} \{ \sigma(t - s) + x(s) \}
\]

- Other analogies apply as well (commutativity and associativity), which allow to extend this analysis to large-scale systems.
- There are significant differences, though!

Min-Plus Calculus: Infimum vs. Minimum

- Let \(S \) be nonempty subset of \(\mathbb{R} \).

Definition [Infimum]

\[
\inf(S) = (M \ s.t. \ s \geq M \ \forall \ s \in S)
\]

\[
\inf(\emptyset) = +\infty
\]

Definition [Minimum]

\[
\min(S) = (M \in S \ s.t. \ s \geq M \ \forall \ s \in S)
\]

- Notation: \(^\wedge \) denotes infimum (e.g. \(a ^\wedge b = \min\{a, b\} \))
The Diod \((\mathbb{R} \cup \{+\infty\}, \land, +)\)

- Conventional ("plus-times") algebra operates on algebraic structure \((\mathbb{R}, +, \ast)\).
- Min-plus algebra replaces operations:
 - "addition" becomes "computation of infimum"
 - "multiplication" becomes "addition"
- Resulting algebraic structure becomes \((\mathbb{R} \cup \{+\infty\}, \land, +)\)

Example:
- Conventional algebra:
 \((3+4) \ast 5 = (3\ast5) + (4\ast5) = 15 + 20\)
- Min-plus algebra:
 \((3 \land 4) + 5 = (3 + 5) \lor (4 + 5) = 8 \lor 9 = 8\)

Properties of \((\mathbb{R} \cup \{+\infty\}, \land, +)\)

- **(Closure of \land)** For all \(a, b \in \mathbb{R} \cup \{+\infty\}, a \land b \in \mathbb{R} \cup \{+\infty\}\)
- **(Associativity of \land)** For all \(a, b, c \in \mathbb{R} \cup \{+\infty\}, (a \land b) \land c = a \land (b \lor c)\)
- **(Existence of a zero element of \land)** There is some \(e \in \mathbb{R} \cup \{+\infty\}\), such that for all \(a \in \mathbb{R} \cup \{+\infty\}\), \(a \land e = a\).
- **(Idempotency of \land)** For all \(a \in \mathbb{R} \cup \{+\infty\}\), \(a \land a = a\).
- **(Commutativity of \land)** For all \(a, b \in \mathbb{R} \cup \{+\infty\}\), \(a \land b = b \land a\).
- **(Closure of +)** For all \(a, b \in \mathbb{R} \cup \{+\infty\}\), \(a + b \in \mathbb{R} \cup \{+\infty\}\).
- **(Zero element of \land is absorbing for +)** For all \(a \in \mathbb{R} \cup \{+\infty\}\), \(a + e = e = e + a\).
- **(Existence of neutral element for +)** There is some \(u \in \mathbb{R} \cup \{+\infty\}\) such that for all \(a \in \mathbb{R} \cup \{+\infty\}\), \(a + u = a = u + a\).
- **(Distributivity of + with respect to \land)** For all \(a, b, c \in \mathbb{R} \cup \{+\infty\}\), \((a \land b) + c = (a + c) \land (b + c) = c + (a \land b)\)
Wide-Sense Increasing Functions

Definition
A function is wide-sense increasing iff \(f(s) \leq f(t) \) for all \(s \leq t \).

- Define \(G \) as the set of non-negative wide-sense increasing functions.
- Define \(F \) as the set of non-negative wide-sense increasing functions with \(f(t) = 0 \) for \(t < 0 \).

- Operations on functions:
 \[
 (f + g)(t) = f(t) + g(t) \\
 (f \wedge g)(t) = f(t) \wedge g(t)
 \]

Wide-Sense Increasing Functions

- **Peak rate function** \(\lambda_R \): “Rate” \(R \)
 \[
 \lambda_R(t) = \begin{cases}
 Rt & \text{if } t > 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]

- **Burst delay function** \(\delta_T \): “Delay” \(T \)
 \[
 \delta_T(t) = \begin{cases}
 +\infty & \text{if } t > T \\
 0 & \text{otherwise}
 \end{cases}
 \]
Wide-Sense Increasing Functions (2)

- Rate latency function $\beta_{R,T}$:
 “Rate” R, “Delay” T
 \[
 \beta_{R,T}(t) = \begin{cases}
 R(t-T) & \text{if } t > T \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Affine functions $\gamma_{r,b}$:
 “Rate” r, “Burst” b
 \[
 \gamma_{r,b}(t) = \begin{cases}
 rt + b & \text{if } t > 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]

Wide-Sense Increasing Functions (3)

- Step function ν_{T}:
 \[
 \nu_{T}(t) = \begin{cases}
 1 & \text{if } t > T \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Staircase function $u_{T,\tau}$:
 “Interval” T, “Tolerance” τ
 \[
 u_{T,\tau}(t) = \begin{cases}
 \left\lfloor \frac{t+\tau}{T} \right\rfloor & \text{if } t > 0 \\
 0 & \text{otherwise}
 \end{cases}
 \]
Wide-Sense Increasing Functions (4)

- More general functions in F can be constructed by combining basic functions.

- Example 1: $r_1 > r_2 > \ldots > r_l$ and $b_1 < b_2 < \ldots < b_l$

 $f_1 = \gamma_{r_1,b_1} \wedge \gamma_{r_2,b_2} \wedge \ldots \wedge \gamma_{r_l,b_l} = \min\{\gamma_{r_i,b_i}\}$

- Example 2:

 $f_2 = \lambda_\infty \land (\beta_{R,2T} + RT) \land (\beta_{R,2T} + 2RT) \land \ldots$

 $= \inf\{\beta_{R,2T} + iRT\}$

Pseudo-Inverse of Wide-Sense Increasing Functions

Definition [Pseudo-inverse]

Let f be a function of F. The pseudo-inverse of f is the function

$f^{-1}(x) = \inf\{t \text{ such that } f(t) \geq x\}$.

- Examples:

 $\lambda_R^{-1} = \lambda_{1/R}$

 $\delta_t^{-1} = \delta_0 \land T$

 $\beta_{R,T}^{-1} = \gamma_{R,RT}$

 $\gamma_{r,b}^{-1} = \beta_{1/r,b}$
Properties of Pseudo-Inverse

- **(Closure)**

 \[f^{-1} \in F \text{ and } f^{-1}(0) = 0 \]

- **(Pseudo-inversion)** We have that

 \[
 \begin{align*}
 f(t) \geq x & \implies f^{-1}(x) \leq t \\
 f^{-1}(x) < t & \implies f(t) \geq x
 \end{align*}
 \]

- **(Equivalent definition)**

 \[f^{-1}(x) = \sup \{ t \text{ such that } f(t) < x \} \]

Min-Plus Convolution

- Integral of function \(f(t) \) (\(f(t) = 0 \) for \(t \leq 0 \)) in conventional algebra:

 \[\int_0^\infty f(s) ds \]

- “Integral” for same function \(f(t) \) in min-plus algebra:

 \[\inf_{s \in \mathbb{R}, s + t \geq 0} \{ f(s) \} \]

- Convolution of two functions \(f(t) \) and \(g(t) \) that are zero for \(t < 0 \) in conventional algebra:

 \[(f \otimes g)(t) = \int_0^t f(t - s) + g(s) ds \]

Definition [Min-plus convolution]

Let \(f \) and \(g \) be two functions of \(F \). The min-plus convolution of \(f \) and \(g \) is the function

\[(f \otimes g)(t) = \inf_{0 \leq s \leq t} \{ f(t - s) + g(s) \} \]
Min-Plus Convolution: Example 1

- Compute \((\gamma_{r,b} \otimes \beta_{R,T})(t)\)
- Case 1: \(0 \leq t \leq T\)
 \[(\gamma_{r,b} \otimes \beta_{R,T})(t) = \inf_{0 \leq s \leq t} \{ \gamma_{r,b}(t-s) + \beta_{R,T}(s) \} \]
 \[= \inf_{0 \leq s \leq t} \{ \gamma_{r,b}(t-s) + 0 \} = \gamma_{r,b}(0) + 0 = 0 \]

Case 2: \(t > T\)
\[
(\gamma_{r,b} \otimes \beta_{R,T})(t) \\
= \inf_{0 \leq s \leq t} \{ \gamma_{r,b}(t-s) + \beta_{R,T}(s) \} \\
= \inf_{0 \leq s \leq t} \{ \gamma_{r,b}(t-s) + \beta_{R,T}(s) \} \wedge \inf_{0 \leq s \leq t} \{ \gamma_{r,b}(t-s) + \beta_{R,T}(s) \} \\
= \inf \{ b + r(t-s) + 0 \} \wedge \inf \{ b + r(t-s) + R(s-T) \} \wedge \{ 0 + R(t-T) \} \\
= \{ b + r(t-T) \} \wedge \{ b + r(t-T) \} \wedge \{ R(t-T) \} \\
= \{ b + r(t-T) \} \wedge \{ R(t-T) \} \\
= \{ b + r(t-T) \} \wedge \{ R(t-T) \} \\
= \{ b + r(t-T) \} \wedge \{ R(t-T) \}
\]

Min-Plus Convolution: Example 1 (2)

![Diagram of Min-Plus Convolution Example 1](image-url)
Min-Plus Convolution: Example 2

\[\delta(t) \otimes \lambda_n = ? \]

\[(\delta(t) \otimes \lambda_n)(t) = \inf_{s \in [0,t]} \{ \delta(t-s) + \lambda_n(s) \} \]

Case 1 \((0 \leq t \leq T)\) :

\[(\delta(t) \otimes \lambda_n)(t) = \inf_{s \in [0,t]} \{ \delta(t-s) + \lambda_n(s) \} \]

\[= \inf_{s \in [0,\infty)} \{ 0 + \lambda_n(s) \} = 0 \]

Case 2 \((t > T)\) :

\[(\delta(t) \otimes \lambda_n)(t) = (\lambda_n \otimes \delta(t))(t) \]

\[= \inf_{s \in [0,t]} \{ \lambda_n(t-s) + \delta(s) \} \]

\[\wedge \inf_{s \in [t,\infty)} \{ \lambda_n(t-s) + \delta(s) \} \]

\[= \inf_{s \in [0,\infty)} \{ \lambda_n(t-s) + 0 \} \wedge \inf_{s \in [t,\infty)} \{ \lambda_n(t-s) + \infty \} \]

\[= \lambda_n(t-T) = \beta_{n,\infty} \]

Models for Data Flow

- Consider system \(S \): receives input data, and delivers data after a variable delay.
- \(R(t) \) is cumulative input function at time \(t \).
- \(R^*(t) \) is cumulative output function at time \(t \).

Definition [Backlog]

The backlog at time \(t \) is \(R(t) - R^*(t) \).

Definition [Virtual Delay]

The virtual delay at time \(t \) is \(d(t) = \inf \{ \tau \geq 0 : R(t) \leq R^*(t + \tau) \} \).
Virtual Delay

\[d(t) = \inf \{ \tau \geq 0 : R(t) \leq R^*(t + \tau) \} \]

- If input and output are continuous
 \[R^*(t + d(t)) = R(t) \] (*)
 \(d(t) \) is smallest value satisfying (*)

Arrival Curves

Definition [Arrival Curve \(\alpha(.) \)]

Given a wide-sense increasing function \(\alpha(.) \) defined for \(t \geq 0 \) (i.e. \(\alpha(.) \in F \)) we say that a flow \(R \) is constrained by \(\alpha(.) \) iff for all \(s \leq t \):

\[R(t) - R(s) \leq \alpha(t - s). \]

- “\(R \) has \(\alpha(.) \) as arrival curve,”
- “\(R \) is bounded by \(\alpha(.) \),”
- “\(R \) is \(\alpha \)-smooth,”

Note:
- \(\alpha(.) \) is in the interval-domain.
- For all \(s \geq 0 \) and \(I \geq 0 \), \(R(s + I) - R(s) \leq \alpha(I) \).
Arrival Curves (2)

Example: Affine Arrival Curve $\gamma_{r,b}$

- $\alpha(t) = rt$ Flow is peak-rate limited. For example when physical bit rate is limited.
- $\alpha(t) = b$ Maximum number of bits ever sent is at most b.
- $\alpha(t) = rt + b$ Leaky bucket with rate r and burst tolerance b.
- A leaky bucket constrains the arrival to the affine arrival curve $\gamma_{r,b} = rt + b$.

Example: Staircase Function $u_{T,\tau}$

Definition [Generic Cell Rate Algorithm GCRA(T, τ)]

The Generic Cell Rate Algorithm (GCRA) with parameters (T, τ) is used with fixed size packets, called cells and defines conformant cells as follows: It takes as input a cell arrival time t and returns result. It has an internal (static) variable tat (theoretical arrival time).

- Initially, $tat = 0$
- When a cell arrives at time t, then

  ```
  if (t < tat - tau)
    result = NON-CONFORMANT
  else {
    tat = max(t, tat) + T;
    result = CONFORMANT;
  }
  ```

- For cells of size k, GCRA(T, τ) constrains flows to the staircase arrival function $k u_{T,\tau}(\cdot)$.

Equivalence of Leaky Bucket and GCRA

For a flow with packets of constant size δ, satisfying the GCRA(T, τ) is equivalent to satisfying a leaky bucket controller with rate r and burst tolerance b given by:

$$b = (\tau T + 1) \delta \quad \text{and} \quad r = \delta / T$$

Applications to ATM and Intserv:

- **Constant Bit Rate (CBR) in ATM:**
 - Single GCRA controller with parameters T (ideal cell interval) and τ (cell delay variation tolerance).

- **Variable Bit Rate (VBR) in ATM:**
 - Two GCRA controllers.

- **Intserv:** T-SPEC (p, M, r, b) with peak rate p, maximum packet size M, sustainable rate r, and burst tolerance b.

 $$\alpha(t) = \min(M + pt, rt + b)$$
Sub-Additivity

Definition [Sub-additive function]

Let f be a function of F. Then f is sub-additive iff

$$f(t + s) \leq f(t) + f(s) \text{ for all } s, t \geq 0.$$

- **Notes:**
 - If $f(0) = 0$, this is equivalent to imposing that $f = f \otimes f$.
 - Concave functions passing through origin are sub-additive.
 - While concavity and convexity are simple to check visually, sub-additivity is not.

Sub-Additive Closure

Definition [Sub-additive closure]

Let f be a function of F. Denote $f^{(n)}$ the function obtained by repeating $(n-1)$ convolutions of f with itself. By convention, $f^{(0)} = \delta_0$, so that $f(1) = f$, $f(2) = f \otimes f$, etc. Then the sub-additive closure of f, denoted by f^∞, is defined by

$$f^\infty = \delta_0 \wedge f \wedge (f \otimes f) \wedge (f \otimes f \otimes f) \wedge ... = \inf_{n \geq 0} \{f^{(n)}\}$$

- The sub-additive closure is the largest sub-additive function smaller than f and zero in $t = 0$.

Sub-Additive Closure: Example

\[R_{T}(t)+K' = (\beta_{R,T}(t)+K')^{\infty} \]

Sub-Additivity and Arrival Curves

Theorem: [Reduction of Arrival Curve to a Sub-Additive One]
Saying that a flow is constrained by a wide-sense increasing function \(\alpha(.) \) is equivalent to saying that it is constrained by the sub-additive closure \(\alpha^{\infty}(.) \).

Lemma: A flow \(R \) is constrained by arrival curve \(\alpha \) iff \(R \leq R \otimes \alpha \).

Lemma: If \(\alpha_1 \) and \(\alpha_2 \) are arrival curves for a flow \(R \), then so is \(\alpha_1 \otimes \alpha_2 \).
Min-Plus Deconvolution and Traffic Envelopes

Definition [Min-Plus Deconvolution]

Let f and g be two functions of F. The min-plus deconvolution of f by g is the function

\[
(f \triangledown g)(t) = \sup_{u \geq 0} \{f(t + u) - g(u)\}.
\]

Definition [Minimum Arrival Curve – or Envelope]

The envelope of a flow R is defined by $R \triangledown R$.

By definition, we have $(R \triangledown R)(t) = \sup_{v \geq 0} \{R(t + v) - R(v)\}$.

Envelopes: Examples

(Figures from J.-Y. Le Boudec and Patrick Thiran: “Network Calculus: A Theory of Deterministic Queuing Systems for the Internet”, Springer Verlag Lecture Notes in Computer Science)
Service Curves

Example 1: Generalized Processor Sharing (GPS)

- During any busy period (flow is backlogged) of length t, flow receives at least rt amount of service.
- Input flow $R(t)$, output flow $R^*(t)$, with t_0 being the beginning of busy period for flow.
 \[R^*(t) - R^*(t_0) \geq r(t - t_0) \]
- At time t_0, the backlog of flow is 0:
 \[R(t_0) - R^*(t_0) = 0 \]
- Therefore:
 \[R^*(t) - R(t_0) \geq r(t - t_0) \]
- So:
 \[R^*(t) \geq \inf_{0 \leq s \leq t} [R(s) + r(t - s)] \implies R^* \geq R \otimes \gamma_{t,0} \]

Service Curves

Example 2: Guaranteed-Delay Server

- Maximum delay for the bits of given flow R is bounded by some fixed value T, with bits of same flow served in FIFO order.
 \[d(t) \leq T \iff R^*(t + T) \geq R(t) \]
- Can be re-written
 \[R^*(s) \geq R(s - T) \quad \text{for all } s \geq T \]
- $R(s - T)$ can be re-written using “impulse function” δ_T:
 \[(R \otimes \delta_T)(t) = R(t - T) \]
- Maximum delay condition can be formulated as
 \[R^* \geq R \otimes \delta_T \]
Service Curve: Definition

The output R^* must be above $R \otimes \beta$, which is the lower envelope of all curves $t \rightarrow R(t_0) + \beta(t - t_0)$.

Definition [Service Curve]

Consider a system S and a flow through S with input and output function R and R^*. We say that S offers to the flow a service curve β iff $\beta \in F$ and $R^* \geq R \otimes \beta$.

Service Curves: Non-Preemptive Priority Node

- Let s be the beginning of busy period for high-priority traffic.
- Let ℓ_{max} be the maximum low-priority packet size.

- **High-priority traffic:**
- HP traffic can be blocked by a low-priority packet.
 \[R^*_H(t) - R^*_H(s) \geq C(t - s) - \ell_{\text{max}} \]
- By definition of s: $R^*_H(s) = R_H(s)$
 \[R^*_H(t) \geq R_H(s) + C(t - s) - \ell_{\text{max}} \]
 \[R^*_H(t) \geq R_H(s) + \max\{0, C(t - s) - \ell_{\text{max}}\} \]

 rate-latency function with rate C and latency ℓ_{max}/C
Service Curves: Non-Preemptive Priority Node (2)

- **Low-Priority Traffic:**
- HP traffic is constrained by arrival function $\alpha_H(.)$.
- Let s' be beginning of server busy period (note that $s' \leq s$).
- At time s', backlogs for both flows are empty:
 \[R^*_H(s') = R_{H'}(s') \quad \text{and} \quad R^*_L(s') = R_L(s') \]
- Over $(s', t]$, the output is $C(t - s')$:
 \[R^*_L(t) - R^*_L(s') = C(t - s') - [R^*_H(t) - R^*_H(s')] \]
 \[\Rightarrow R^*_H(t) - R^*_H(s') = R^*_H(t) - R_{H'}(s') \leq R^*_H(t) - R_{H'}(s') \leq \alpha_H(t - s') \]
- $R^*_H(t) - R^*_H(s') \geq 0$:
 \[\Rightarrow R^*_L(t) - R^*_L(s') = R^*_L(t) - R^*_L(s') \geq \max\{0, C(t - s') - \alpha_H(t - s')\} \]

Network Calculus Basics: Backlog Bound

Theorem [Backlog Bound]

Assume a flow, constrained by arrival curve α traverses a system that offers a service curve β. The backlog $R(t) - R^*(t)$ for all t satisfies:

\[R(t) - R^*(t) \leq \sup_{s \geq 0} \{ \alpha(s) - \beta(s) \} = (\alpha \ominus \beta)(0). \]
Network Calculus Basics: Delay Bound

Definition [Horizontal Deviation]

Let f and g be two functions of F. The horizontal deviation is defined as

$$h(f, g) = \sup_{t \geq 0} \left\{ \inf \{ d \geq 0 \text{ such that } f(t) \leq g(t + d) \} \right\}.$$

Horizontal deviation can be computed using pseudo inverse:

$$g^{-1}(f(t)) = \inf \{ \Delta \text{ such that } g(\Delta) \geq f(t) \} = \inf \{ d \geq 0 \text{ such that } g(t + d) \geq f(t) \} + t.$$

$$\Rightarrow h(f, g) = \sup_{t \geq 0} \{ g^{-1}(f(t)) - t \} = (g^{-1}(f) \ominus \lambda_1)(0).$$

Theorem [Delay Bound]

Assume a flow, constrained by arrival curve α, traverses a system that offers a service curve of β. The virtual delay $d(t)$ for all t satisfies: $d(t) \leq h(\alpha, \beta)$.

Network Calculus Basic: Output Flow

Theorem [Output Flow]

Assume that a flow, constrained by arrival curve α, traverses a system that offers a service curve of β. The output flow is constrained by the arrival curve $\alpha^* = \alpha \ominus \beta$.
Theorem [Concatenation of Nodes]
Assume a flow traverses systems S_1 and S_2 in sequence. Assume that S_i offers a service curve of β_i, $i=1,2$ to the flow. Then the concatenation of the two systems offers a service curve of $\beta_1 \otimes \beta_2$ to the flow.

Proof:

- Call R_1 the output of node 1. This is also the input to node 2.

 $R_1 \geq R \otimes \beta_1$

- and at node 2

 $R^* \geq R_1 \otimes \beta_2 \geq (R \otimes \beta_1) \otimes \beta_2 = R \otimes (\beta_1 \otimes \beta_2)$

Example 1:

$\beta_{R1,T1} \otimes \beta_{R2,T2} = \beta_{\min[R1,R2],T1 + T2}$

Example 2: A rate-latency server can be described as $\beta_{R,T} = (\delta T \otimes \lambda_R)(t)$. It can therefore be viewed as a concatenation of a guaranteed-delay node with delay T followed by a GPS node with rate R.
