Priority-Driven Scheduling of Periodic Tasks

- Priority-driven vs. clock-driven scheduling:

 clock-driven:

 cyclic schedule → executive → processor

 a priori!

 priority-driven:

 tasks → priority queue → processor

- Assumptions:
 - tasks are periodic
 - jobs are ready as soon as they are released
 - preemption is allowed
 - tasks are independent
 - no aperiodic or sporadic tasks

- We will later:
 - integrate aperiodic and sporadic tasks
 - integrate resources
 - etc.

Why Focus on Uniprocessor Scheduling?

- Dynamic vs. static multiprocessor scheduling:

 Dynamic:

 tasks → priority queue → processors

 local priority queues

 Static:

 tasks → partn1 → partn2 → partn3 → partn4

 task assignment

- Poor worst-case performance of priority-driven algorithms in dynamic environments.
- Difficulty in validating timing constraints.
Static-Priority vs. Dynamic Priority

- **Static-Priority:** All jobs in task have same priority.
- Example: **Rate-Monotonic:** “The shorter the period, the higher the priority.”

 \[
 T_1 = (5, 3, 5) \quad T_2 = (3, 1, 3)
 \]

- **Dynamic-Priority:** May assign different priorities to individual jobs.
- Example: **Earliest-Deadline-First:** “The nearer the absolute deadline, the higher the priority.”

Example Algorithms

- **Static-Priority:**
 - **Rate-Monotonic (RM):** “The shorter the period, the higher the priority.” [Liu+Layland ’73]
 - **Deadline-Monotonic (DM):** “The shorter the relative deadline, the higher the priority.” [Leung+Whitehead ’82]

 For arbitrary relative deadlines, DM outperforms RM.

- **Dynamic-Priority:**
 - **EDF:** Earliest-Deadline-First.
 - **LST:** Least-Slack-Time-First.
 - **FIFO/LIFO**
 - **etc.**
Considerations about Priority Scheduling

- FIFO/LIFO do not take into account urgency of jobs.
- Static-priority assignments based on functional criticality are typically non-optimal.
- We confine our attention to algorithms that assign priorities based on temporal parameters.

- Def: **[Schedulable Utilization]**

 Every set of periodic tasks with total utilization less or equal than the schedulable utilization of an algorithm can be feasibly scheduled by that algorithm.

- The higher the schedulable utilization, the better the algorithm.

- Schedulable utilization is always less or equal 1.0!

Schedulable Utilization of FIFO

- Result of Opinion Poll in CPSC-663 of Fall 2001:

![Bar Chart showing number of votes for schedulable utilization]

-

Number of Votes

0% 10% 20% 30% 40% 50% 100%

<table>
<thead>
<tr>
<th>Utilization</th>
<th>Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>10%</td>
<td>2</td>
</tr>
<tr>
<td>20%</td>
<td>1</td>
</tr>
<tr>
<td>30%</td>
<td>6</td>
</tr>
<tr>
<td>40%</td>
<td>4</td>
</tr>
<tr>
<td>50%</td>
<td>4</td>
</tr>
<tr>
<td>100%</td>
<td>1</td>
</tr>
</tbody>
</table>
Schedulable Utilization of FIFO (II)

- **Theorem:**
 \[U_{FIFO} = 0 \]

- **Proof:**
 Given any utilization level \(\epsilon > 0 \), we can find a task set, with utilization \(\epsilon \) may not be feasibly scheduled according to FIFO.

 Example task set:
 \[
 \begin{align*}
 T_1 & : \quad e_1 = \frac{1}{3}p_2 \\
 T_2 & : \quad p_2 = \frac{2}{3}p_1 \\
 e_2 & = p_1
 \end{align*}
 \]
 \[\Rightarrow U = \epsilon \]

Optimality of EDF for Periodic Systems

- **Theorem:** A system of independent preemptable tasks with relative deadlines equal to their periods is feasible iff their total utilization is less or equal 1.

- **Proof:**
 - **only-if:** obvious
 - **if:**
 find algorithm that produces feasible schedule of any system with total utilization not exceeding 1.
 Try EDF.

- **We show:** If EDF fails to find feasible schedule, then the total utilization must exceed 1.

- **Assumptions:**
 - At some time \(t \), Job \(J_{i,c} \) of Task \(T \) misses its deadline.
 - **WLOG:** if more than one job have deadline \(t \), break tie for \(J_{i,c} \).
Optimality of EDF (cont)

- **Case 1:** Current period of every task begins at or after $r_{i,c}$.
- **Case 2:** Current period of some task may start before $r_{i,c}$.

Case 1:

Current jobs other than J_i do not execute before time t.

$$t < \frac{(t - \phi_i) e_i}{p_i} + \sum_{k \neq i} \frac{t - \phi_k}{p_k} e_k$$

$$\leq t \cdot \frac{e_i}{p_i} + t \cdot \sum_{k \neq i} \frac{e_k}{p_k}$$

$$= t \cdot U$$

$$\Rightarrow U > 1$$

Optimality of EDF (cont 2)

- **Case 2:** Some current periods start before $r_{i,c}$.

Notation:

- T: Set of all tasks.
- T': Set of tasks where current period starts before $r_{i,c}$.
- $T - T'$: Set of tasks where current period starts at or after $r_{i,c}$.

- t_i: Last point in time before t when some current job in T' is executed.

No current job is executed immediately after time t_i.

- Why? 1. All jobs in T' are done.

Case 2 (cont)

\[t - t_i < \left(\frac{t - t_i - \phi_i}{p_i} \right) + \sum_{T_k \in T^r} \left[\frac{t - t_i - \phi_i}{p_i} \right] e_k \]
\[\leq (t - t_i) \frac{\phi_i}{p_i} + (t - t_i) \sum_{T_k \in T^r} \frac{e_k}{p_k} \]
\[\leq (t - t_i) U \]
\[\Rightarrow U > 1 \]

- What about assumption that processor never idle?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>forget this part</td>
<td>same proof holds for this part</td>
<td>t_i</td>
</tr>
</tbody>
</table>

What about Static Priority?

- Static-Priority is not optimal!
- Example:

\[
T_1 = (2, 1, 2) \\
T_2 = (5, 2.5, 5)
\]

\[U = \frac{e_1}{p_1} + \frac{e_2}{p_2} = 1 \leq 100\% \]

- So: Why bother with static-priority?
 - simplicity
 - predictability
Unpredictability of EDF Scheduling

- Over-running jobs hold on to their priorities
- Example:

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

Normal Operation

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

T3 over-runs by a bit more than one time unit

Unpredictability of EDF Scheduling (II)

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

T3 over-runs for a bit longer....

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

The same situation using Rate-Monotonic Scheduling: high-priority tasks are protected
Schedulability Bounds for Static-Priority

- Simply-Periodic Workloads:

 Simply-Periodic: A set of tasks is simply periodic if, for every pair of tasks, one period is multiple of other period.

 Theorem: A system of simply periodic, independent, preemptable tasks whose relative deadlines are equal to their periods is schedulable according to RM if and only if their total utilization does not exceed 100%.

 Proof: Assume T_i misses deadline at time t. t is integer multiple of p_i, t is also integer multiple of p_k, $\forall p_k < p_i$.

 Total time to complete jobs with deadline t:
 \[
 \sum_{k=1}^{i} \frac{t \cdot e_k}{p_k} = t \cdot \frac{U_i}{t} = t \cdot \frac{\sum_{k=1}^{i} e_k}{p_k}
 \]

 If job misses deadline, then $U_i > 1 \Rightarrow U > 1$.

 Q.E.D.

Schedulable Utilization of Tasks with $D_i=p_i$

- Theorem: [Liu&Layland '73] A system of n independent, preemptable periodic tasks with $D_i=p_i$ can be feasibly scheduled by the RM algorithm if its total utilization U is less or equal to $U_{RM}(n) = n(2^{1/n} - 1)$.

 Why not 1.0? Counterexample:
 \[
 T_1 = (2, 1, 2) \\
 T_2 = (5, 2.5, 5)
 \]

 - T_1 misses deadline!

 - T_2 misses deadline!

 Proof: First, show that theorem is correct for special case where longest period $p_n < 2p_i$ ($p_i =$ shortest period). We will remove this restriction later.
Proof of Liu&Layland

- **General idea:** Find the most-difficult-to-schedule system of \(n \) tasks among all difficult-to-schedule systems of \(n \) tasks.

- **Difficult-to-schedule:** Fully utilizes processor for some time interval. Any increase in execution time would make system unschedulable.

- **Most-difficult-to-schedule:** System with lowest utilization among difficult-to-schedule systems.

- Each of the following 4 steps brings us closer to this system.

 - **Step 1:** Identify phases of tasks in most-difficult-to-schedule system.
 System must be in-phase. (talk about this later)

Proof of Liu&Layland (cont)

- **Step 2:** Choose relationship between periods and execution times. Hypothesize that parameters of MDTS system are thus related.

 - Confine attention to first period of each task.
 - Tasks keep processor busy until end of period \(p_n \).

\[
\begin{align*}
 e_k &= p_{k+1} - p_k \\
 e_n &= p_n - 2 \sum_{k=1}^{n-1} e_k \\
\end{align*}
\]

call this Property A
Proof Liu&Layland (cont)

• Step 3: Show that any set of D-T-S tasks that are not related according to Property A has higher utilization.

• What happens if we deviate from Property A?

• Deviate one way:
 Increase execution of some high-priority task by ε:
 \[e'_1 = e_1 + \varepsilon = p_2 - p_1 + \varepsilon \]
 Must reduce execution time of some other task:
 \[e'_k = e_k - \varepsilon \]
 \[U' - U = \frac{e'_1}{p_1} + \frac{e'_k}{p_k} - \frac{e_1}{p_1} - \frac{e_k}{p_k} = \frac{\varepsilon}{p_1} - \frac{\varepsilon}{p_k} > 0 \]

Proof Liu&Layland (cont)

• Deviate other way:
 Reduce execution time of some high-priority tasks by ε:
 \[e''_1 = e_1 - \varepsilon = p_2 - p_1 - \varepsilon \]
 Must increase execution time of some lower-priority task:
 \[e''_k = e_k + 2\varepsilon \]
 \[U'' - U = \frac{2\varepsilon}{p_k} - \frac{\varepsilon}{p_1} > 0 \]
Proof Liu&Layland (cont)

- **Step 4:** Express the total utilization of the M-D-T-S task system (which has Property A).

Define

\[g_i := \frac{p_n - p_i}{p_i} \Rightarrow \begin{cases} e_i &= g_i p_i - g_{i+1} p_{i+1} \\ e_n &= p_n - 2g_1 p_1 \end{cases} \]

\[U = \sum_{i=1}^{n} \frac{e_i}{p_i} = \sum_{i=1}^{n-1} \left\{ g_i \left(g_{i+1} \frac{p_{i+1}}{p_i} \right) + 1 - 2g_1 \frac{p_1}{p_n} \right\} = 1 + g_1 \frac{g_1 - 1}{g_1 + 1} + \sum_{i=2}^{n-1} g_i \frac{g_i - g_{i-1}}{g_i + 1} \]

- Find least upper bound on utilization: Set first derivative of \(U \) with respect to each of \(g_i \)'s to zero:

\[\frac{dU}{dg_i} = \frac{g_{j+1}g_j - g_j - g_{j-1}}{(g_j + 1)^2} - \frac{g_{j+1}}{g_j + 1} = 0 \]

for \(j=1,2,3,\ldots,n-1 \)

\[g_j = 2^{(n-j)/n} - 1 \]

\[\Rightarrow U = n \left(2^{1/n} - 1 \right) \]

Q.E.D.

Period Ratios > 2

- We show: 1. Every D-T-S task system \(T \) with period ratio \(> 2 \) can be transformed into D-T-S task system \(T' \) with period ratio \(< 2 \).

2. The total utilization of the task set decreases during the transformation step.

- We can therefore confine search to systems with period ratio \(< 2 \).

- Transformation \(T-T' \): while \(\exists T_k \) with \(l \cdot p_k < p_n \leq (l+1)p_k \) (\(l \geq 2 \))

\[T_k(p_k, e_k) \rightarrow (l \cdot p_k, e_k) \]

\[T_n(p_n, e_n) \rightarrow (p_n, e_n + (l-1)e_k) \]

end

- Compare utilizations:

\[U - U' = \frac{e_k}{p_k} + \frac{e_n}{p_n} - \frac{e_k}{l \cdot p_k} - \frac{e_n + (l-1)e_k}{p_n} = \frac{e_k}{p_k} - \frac{e_k}{l \cdot p_k} - \frac{(l-1)e_k}{p_n} \]

\[= \left(\frac{1}{l \cdot p_k} - \frac{1}{p_n} \right) (l-1)e_k > 0 \]

Q.E.D.
That Little Question about the Phasing...

- **Definition:**
 - [Critical Instant]
 - [Liu&Layland] If the maximum response time of all jobs in T_i is less than D_i, then the job of T_i released in the critical instant has the maximum response time.
 - [Baker] If the response time of some jobs in T_i exceeds D_i, then the response time of the job released during the critical instant exceeds D_i.

- **Theorem:** In a fixed-priority system where every job completes before the next job in the same task is released, a critical instant of a task T_i occurs when one of its jobs $J_{i,c}$ is released at the same time with a job of every higher-priority task.

Proof (informal)

- **Assume:** Theorem holds for $k < i$.
- **WLOG:** $\forall k < i : \phi_k = 0$, and we look at $J_{i,1}$:
- **Observation:** The completion time of higher-priority jobs is independent of the release time of $J_{i,1}$.
- **Therefore:** The sooner $J_{i,1}$ is released, the longer it has to wait until it is completed.

Q.E.D.
Proof 2 (less informal)

- **WLOG:** \(\min\{\phi_k | k = 1, \ldots, i\} = 0 \)
- **Observation:** Need only consider time processor is busy executing jobs in \(T_n, T_{n-1}, \ldots, T_{i} \) before \(f_i \).
 If processor idle or executes lower-priority jobs, ignore that portion of schedule and redefine the \(f_i \)’s.

- During \([\phi_k, \phi_i + R_{i,1}]\) a total of \(\left\lceil \frac{(R_{i,1} + \phi_i - \phi_k)}{p_k} \right\rceil \) jobs of \(T_k \) become ready for execution.

- \(R_{i,1} \) is smallest solution, if such a solution exists.

- So:

 \[R_{i,1} + \phi_i = e_i + \sum_{k=1}^{i-1} \left\lceil \frac{R_{i,1} + \phi_i - \phi_k}{p_k} \right\rceil e_k \]

- And:

 \[R_{i,1} = e_i + \sum_{k=1}^{i-1} \left\lceil \frac{R_{i,1} + \phi_i - \phi_k}{p_k} \right\rceil e_k - \phi_i \]

Optimality of Deadline-Monotonic Sched.

- **Theorem:** If a task set can be feasibly scheduled by some static-priority algorithm, it can be feasibly scheduled by DM.

- **Proof:**
 - Assume: A feasible schedule \(S \) exists for a task set \(T \). The priority assignment is \(T_n, T_{n-1}, \ldots, T_1 \).
 For some \(k \), we have \(D_k > D_{k+1} \).
 - We show that we can swap the priority of \(T_k \) and \(T_{k+1} \) and the resulting schedule – call it \(S(k) \) – remains feasible.
Optimality of DM: Proof (II)

- **Observation:** Response time for each task other than \(T_k \) and \(T_{k+1} \) is the same in \(S \) and \(S(k) \).
- **Observation:** Response time of \(T_{k+1} \) in \(S(k) \) must be smaller than in \(S \), since \(T_{k+1} \) is not delayed by \(T_k \) in \(S(k) \).
- Thus: Must prove that deadline of first invocation of \(T_k \) is also met in \(S(k) \). (Critical Instant)
- Let \(x \) be the amount of work done in \(S \) for all tasks in \(T_1,...,T_{k-1} \) during interval \([0, d_{k+1}]\).
- Note: Amount of work done in \(S \) and \(S(k) \) for tasks in \(T_1,...,T_{k-1} \) is at most \(x \) during any interval of length \(d_{k+1} \).
- We must have
 \[
 x + e_k + e_{k+1} \leq d_{k+1}
 \]

Optimality of DM: Proof(III)

- **Observation:** Number of invocations of \(T_{k+1} \) in Schedule \(S(k) \) during interval \([0, [d_k/d_{k+1}] \ast d_{k+1}] \) is at most \([d_k/d_{k+1}] \ast d_{k+1}\).
- **Observation:** Amount of work for all tasks in \(T_1,...,T_{k-1} \) in the interval \([0, [d_k/d_{k+1}] \ast d_{k+1}] \) is at most \([d_k/d_{k+1}] \ast x \).
- The following condition is sufficient to guarantee that the deadline of the first request of \(T_k \) is met in \(S(k) \):
 \[
 [d_k/d_{k+1}] \ast (x+e_{k+1}) + e_k \leq [d_k/d_{k+1}] \ast d_{k+1}
 \]
- This, however, follows from inequality on previous page. (qed)
Why Utilization-Based Tests?

- If no parameter ever varies, we could use simulation.
- But:
 - Execution times may be smaller than \(e_i \)
 - Inter-release times may vary.
- Tests are still robust.
- Useful as methodology to define execution times or periods.

Time-Demand Analysis

- Compute total demand on processor time of job released at a critical instant and by higher-priority tasks as function of time from the critical instant.
- Check whether demand can be met before deadline.
- Determine whether \(T_i \) is schedulable:
 - Focus on a job in \(T_i \), suppose release time is critical instant of \(T_i \): \(w(t) \) Processor-time demand of this job and all higher-priority jobs released in \((t_0, t)\):
 \[
 w_i(t) = c_i + \sum_{k=1}^{i-1} \left\lfloor \frac{t}{p_k} \right\rfloor c_k
 \]
 - This job in \(T_i \) meets its deadline if, for some \(t_i \leq D_i \leq p_i \):
 \[w(t_i) \leq t_i \]
 - If this does not hold, job cannot meet its deadline, and system of tasks is not schedulable by given static-priority algorithm.
Example

\[T_1 = (3, 1) \]
\[T_2 = (5, 1.5) \]
\[T_3 = (7, 1.25) \]
\[T_4 = (8, 0.5) \]
Example

\[T_1 = (3, 1) \]
\[T_2 = (5, 1.5) \]
\[T_3 = (7, 1.25) \]
\[T_4 = (8, 0.5) \]
Practical Factors

- Non-Preemptable Portions (*)
- Self-Suspension of Jobs (*)
- Context Switches (*)
- Insufficient Priority Resolutions (Limited Number of Distinct Priorities)
- Time-Driven Implementation of Scheduler (Tick Scheduling)
- Varying Priorities in Fixed-Priority Systems

Practical Factors I: Non-Preemptability

- Jobs, or portions thereof, may be non-preemptable.

- Definition:

 \[\text{[non-preemptable portion]} \]
 \[r_j : \text{largest non-preemptable portion of jobs in } T_i. \]

- Definition:

 \[\text{[blocked job]} \]

 A job is said to be \text{blocked} if it is prevented from executing by lower-priority job. (priority-inversion)

- When testing schedulability of a task \(T_j \), we must consider
 - higher-priority tasks
 and
 - non-preemptable portions of lower-priority tasks
Analysis with Non-Preemptable Portions

- Definition: [blocking time]

The blocking time b_i of Task T_i is the longest time by which any job of T_i can be blocked by lower-priority jobs:

$$b_i = \max_{i+1 \leq k \leq n} \rho_k$$

- Time-demand function with blocking:

$$w_i(t) = e_i + b_i + \sum_{k=1}^{i-1} \left\lfloor \frac{t}{p_k} \right\rfloor e_k$$

- Utilization bounds with blocking:

 test one task at a time:

 $$\frac{e_1}{p_1} + \frac{e_2}{p_2} + \ldots + \frac{e_i + b_i}{p_i} = \sum_{k=1}^{i} \frac{e_k}{p_k} + \frac{b_i}{p_i} \leq U_{RM}(i)$$

Non-Preemptability: Example

\[T_1 = (4, 1) \]
\[T_2 = (5, 1.5) \]
\[T_3 = (9, 2) \]
Practical Factors II: Self-Suspension

- **Definition:** Self-suspension of a job occurs when the job waits for an external operation to complete (RPC, I/O operation).

- **Assumption:** We know the maximum length of external operation; i.e., the duration of self-suspension is bounded.

- **Example:**
 - $T_1 = (\phi_1=0, p_1=4, e_1=2.5)$
 - $T_2 = (\phi_2=3, p_2=7, e_2=2.0)$

- **Analysis:** b_{SS}^i: Blocking time of T_i due to self-suspension.
 \[
 b_{SS}^i = \max \text{ self-suspension time of } T_i \\
 + \sum_{k=1}^{i-1} \min(e_k, \max \text{ self-suspension time of } T_k)
 \]

Self-Suspension with Non-Preemptable Portions

- Whenever job self-suspends, it loses the processor.
- When tries to re-acquire processor, it may be blocked by tasks in non-preemptable portions.

- **Analysis:** b_{NP}^i: Blocking time due to non-preemptable portions
 - K_i: Max. number of self-suspections
 - b_i: Total blocking time

 \[
 b_i = b_{SS}^i + (K_i + 1) b_{NP}^i
 \]

Practical Factors III: Context Switches

- **Definition:**

 In a job-level fixed priority assignment, each job is given a fixed priority for its entire execution.

- **Case I:** No self-suspension

 - In a job-level fixed-priority system, each job preempts at most one other job.

 - Each job therefore causes at most two context switches

 - Therefore: Add the context switch time twice to the execution time of job: \(e_i = e_i + 2 \text{CS} \)

- **Case II:** Self-suspending can occur

 - Each job suffers two more context switches each time it self-suspends.

 - Therefore: Add more context switch times appropriately: \(e_i = e_i + 2 (K_i + 1) \text{CS} \)