
CPSC-663: Real-Time Systems Real-Time Scheduling in Solaris

1

Real-Time Operating Systems Issues

• Example of a real-time capable OS: Solaris.

S. Khanna, M. Sebree, J.Zolnowsky.

“Realtime Scheduling in SunOS 5.0”. USENIX - Winter ‘92.

• Problems with the design of general-purpose real-time capable

OS: Solaris

J.Nieh, J.G.Hanko, J.D. Northcutt, G.A.Wall.

“SVR4 UNIX Scheduler Unacceptable for Multimedia

Applications.” NOSSDAV ‘93.

URL: http://www.cs.columbia.edu/~nieh/#publications

Realtime Scheduling in SunOS 5.0

• Requirements for Solaris as a real-time OS:
– Scheduling of tasks in kernel should be deterministic. Kernel should

be free from unbounded priority inversion.
– Allow for mixed-mode applications: real-time and non-real-time

components.
– Appropriate for multiprocessor machines.
– Provide standard interface to user, such as System V.

• Historically: unbounded dispatch latency caused by non-preemptible
kernel.
– Solution 1: Well-defined preemption points. (?)
– Solution 2: Fully synchronize access by kernel code to kernel data

structures.
• Reduces set of non-preemptible portions in kernel.
• Kernel is multithreaded.

CPSC-663: Real-Time Systems Real-Time Scheduling in Solaris

2

Scheduling Classes

• Time-Sharing class:
– round robin scheduling.

• Sys class:
– fixed priority scheduling,
– not accessible by the user.

• Real-Time class:
– fixed priority scheduling.

• priocntl(2)
– Change scheduling class or other

scheduling parameters.

interrupt

RT

sys

TSTS

+20

-20
0

59

99

159

RT

0

59

Scheduling

• State of thread: blocked, runnable,
executing

• Scheduling operations (operations on
dispatch queue) are protected by single
spin lock schedlock.

• Variables per processor:
– cpu_thread: thread curr. executing
– cpu_dispthread: thread last sched.

for disp
– cpu_idle: special idle thread
– cpu_runrun: user-level preemption
– cpu_kprunrun: kernel-level preemption
– cpu_chosenlevel: next trhead to

preempt

RT0 RT1 RT2

dispatch queue

runnable threads

S0

DT

BT0 BT1 BT2

blocked threads

P1

executing thread

processor

CPSC-663: Real-Time Systems Real-Time Scheduling in Solaris

3

Operations on Dispatch Queues

• setfrontdq() put thread in dispatch queue
• setbackdq() (when thread is preempted)
• cpu_choose() find CPU on which runnable thread might

be dispatched
• cpu_surrender() give up CPU when priority is lowered
• disp() select a thread for execution from the

dispatch queue (used by swtch)
• swtch() select highest-priority thread for execution

if none is found, returns idle thread
modifies many per-processor variables

• kpreempt() attempt to preempt kernel
• kpreempt_disable()disable preemption for critical interval
• kpreempt_enable() reenable preemption

Priority Inversion

• Priority inversion happens due to
– non-preemptable portions
– access to synchronization objects
– “hidden scheduling”

• Synchronization Objects (mutex, r/w locks)
– Solution: basic priority-inheritance protocol

• Hidden Scheduling
– Work done asynchronously in kernel on behalf of threads

without regard to their priority.
– Example: streams processing

– Example: timeouts done at lowest interrupt level
– Solution: Move this code into kernel threads running at sys

priority level.

process
user

kernel
check pending
streams requests

CPSC-663: Real-Time Systems Real-Time Scheduling in Solaris

4

Priority Inheritance

• Primitives:
– pi_willto(thread) impose priority of argument thread onto all

threads that block it, directly or indirectly
– pi_waive() release priority inheritance

• The function pi_willto() is called after the thread has been put to sleep in the
queue associated with the synchronization object. The information about the
synchronization object can therefore be recovered.

• Priority inheritance for readers/writers locks:
– when writer owns the lock: no problem
– when readers own the lock:

• potentially many “owners”; not practical to keep pointer from resource
to every thread that owns it

• Solution: define a single “owner-of-record”, which is only thread that
inherits priority.

J.Nieh, J.G.Hanko, J.D. Northcutt, G.A.Wall.

“SVR4 UNIX Scheduler Unacceptable for Multimedia Applications.” NOSSDAV ‘93.

URL: http://www.cs.columbia.edu/~nieh/#publications

Applicability of SunOS 5.0 for Multimedia Applications

• Objectives of real-time OS for general-purpose workstations

– Provide real-time guarantees without reducing general
capabilities of workstations

– Manage resources so that other applications can operate
correctly.

– SunOS 5.0 (SVR4) provides real-time static-priority scheduler.

• Question: How well are resources managed?

CPSC-663: Real-Time Systems Real-Time Scheduling in Solaris

5

Experimental Evaluation: Overview

• Platform
– Sun Sparc10
– Solaris 2.2
– Scheduling classes (RT class, TS class, SYS class)

• Experiment (measurement) criteria:
– Interactive:

• minimize average and variance between user input and response
• Typing, cursor motion, mouse selection <= 50 - 150 ms.

– Continuous media:
• Minimize difference between average display rate and desired display

rate.
• Minimize variance of display rate.

– Batch:
• “Minimize difference between actual time of completion and minimum

time of completion when whole machine is dedicated.”

Experiment: Workload

• 3 classes of workload

• Interactive: (editors, GUIs)
– TYPING: Emulate a user typing, and display characters on the screen.

• Continuous media: (television, teleconference)
– VIDEO: Capture data from digitizer board and display through x-

windows server.

• Batch: (compilations, scientific computation)
– make: Repeatedly fork and wait for small processes to complete.

• Instrumentation of application and system software components does not
measurably change the performance.

CPSC-663: Real-Time Systems Real-Time Scheduling in Solaris

6

Experiment: The Baseline

• What is a well-behaved system?
– Concurrent applications should make some progress
– No case where system fails to respond to operator input
– User should exercise wide range of influence over system

behavior.

Application Measurement Mean Std. Dev.
Typing Latency between character arrival 38.5 ms 15.7 ms

 and rendering to frame buffer
Video Time between display of successive 112 ms 9.75 ms

frames
Compute Time to execute one loop iteration 149 ms 6.79 ms

Table: Application Baseline Values

Experiment 1: Run all tasks in RT class

• Window system is no longer accepting input
events from mouse or keyboard.

• Command interpreter not permitted to run.
• System blocked by batch-job

– Identified as I/O intensive interactive job.
Gets priority boosts for sleeping.

• Window server develops backlog of service
requests. As it works down its queue, it gets
identified as compute bound.

• Table entries are relative to baseline (tall is
better)

• T: TYPING character latency
• V: time between display of successive frames for

VIDEO.
• C: time for one iteration in COMPUTE.

CPSC-663: Real-Time Systems Real-Time Scheduling in Solaris

7

What can the System Administrator do?

Increase priority of X-
Server, decrease priority of
batch task

In addition, decrease
priority of VIDEO a
bit

Decrease priority of VIDEO a
little bit more.

Play with RT Class

CPSC-663: Real-Time Systems Real-Time Scheduling in Solaris

8

Result: New TS Class

• Removes anomalies of identifying batch jobs
as interactive and vice versa.

• Ensures that each process makes steady
progress.

• Reduces feedback interval
• Included in Solaris 2.3.

