CPSC-663: Real-Time Systems Clock-Driven Scheduling

Cyclic Schedules: General Structure

e Scheduling decision is made periodically:

1 | — |

® Scheduling decision is made periodically: \decision points
- choose which job to execute

- perform monitoring and enforcement operations

e Major Cycle: Frames in a hyperperiod.

| I I B

hyperperiod H

© R. Bettati

Frame Size Constraints

e Frames must be sufficiently long so that every job can start and
complete within a single frame:

Q) Jf =max(e;)
e The hyperperiod must have an integer number of frames:
2) f‘H (f"divides"H)
e For monitoring purposes, frames must be sufficiently small that

between release time and deadline of every job there is at least
one frame:

T
’

T k] B
t ot +f 2f VD, D 431

2f —(t'-t)= D,
-t = ged(p;, f)
A3) 2f -ged(p;, /)= D,

© R. Bettati

CPSC-663: Real-Time Systems Clock-Driven Scheduling

Frame Sizes: Example

o Task set:
pi ¢ D
L = (15 1, 14)
T, = (20, 2, 26) H =660
T, = (22, 3, 22)
1) Vi:fze = f=3
(2 fH = f=23456,10,.

(3) Vi:2f-ged(pi, f)<Di = f=23456

=> possible values for f:3,4,5,6

© R. Bettati
Slicing and Scheduling Blocks
. . Di €; Di
e Slicing T = (4 1, 4)
H = f=5
T, = (5 2 5) 3:f<4}?!
— T, = (20, 5 20 3 =
slice T1 = (4, 1, 4)
T, _
T2 (> 2’ 5) (1) - f23
T, = (20, 1, 20) f=4
3 = f54}
L. T, = (20, 3, 20)
T, = (20, 1, 20)
scheduling block
/—%
1] 2 [3]1] 2 1] 3, 1] 2 1] 2 |3
0 4 8 12 16 20
H
© R. Bettati

CPSC-663: Real-Time Systems Clock-Driven Scheduling

Cyclic Executive

Input: Stored schedule: L(k) for k = 0,1,...,F-1;
Aperiodic job queue.

TASK CYCLIC EXECUTIVE:

t = 0; /* current time */ k = 0; /* current frame */
CurrentBlock := empty;
BEGIN LOOP
IF <any slice in CurrentBlock is not completed> take action;
CurrentBlock := L(k);
k := k+1 mod F; t := t+l;

set timer to expire at time tF;
IF <any slice in CurrentBlock 1is not released> take action;
wake up periodic task server to handle slices in CurrentBlock;
sleep until periodic task server completes or timer expires;
IF <timer expired> CONTINUE;
WHILE <the aperiodic job queue 1is not empty>
wake up the first job in the queue;
sleep until the aperiodic job completes;
remove the just completed job from the queue;
END WHILE;
sleep until next clock interrupt;
END LOOP;
END CYCLIC EXECUTIVE;

© R. Bettati

What About Aperiodic Jobs?

e Typically:
- Scheduled in the background.
- Their execution may be delayed.

e But:
- Aperiodic jobs are typically results of external events.

e Therefore:
- The sooner the completion time, the more responsive the system
- Minimizing response time of aperiodic jobs becomes a design issue.

e Approach:
- Execute aperiodic jobs ahead of periodic jobs whenever possible.
- This is called Slack Stealing.

© R. Bettati

CPSC-663: Real-Time Systems

Slack Stealing (Lehoczky et al., RTSS'87)

x, Amount of time allocated to slices executed during frame F,.

S, Slack during frame F: 5, := f - x,.

e The cyclic executive can execute aperiodic jobs for s, amount of
time without causing jobs to miss deadlines.

e Example:

| B

0 44.5_‘ 8
4
| H
B
© R. Bettati
Sporadic Jobs

e Reminder: Sporadic jobs have hard deadlines; the release time and

the execution time are not known a priori.
Worst-case execution time known when job is released.

e Need acceptance test:

Jide) s, Seig s d
Ly L
Fc-I FL‘ Fc+1 Fl Fl+1

!
S(e,l) = E s; . Total amount of slack in Frames F, ..., F,.

i=c

e Acceptance Test: IF S(c,1) < e THEN
reject job;

ELSE
accept job; o

o

schedule execution;’
END;

© R. Bettati

Clock-Driven Scheduling

CPSC-663: Real-Time Systems Clock-Driven Scheduling

Scheduling of Accepted Jobs

e Static scheduling:

- Schedule as large a slice of the accepted job as possible in the
current frame.

- Schedule remaining portions as late as possible.
¢ Mechanism:

- Append slices of accepted job to list of periodic-task slices in
frames where they are scheduled.

e Problem: Early commit.
e Alternatives:

- Rescheduling upon arrival.
- Priority-driven scheduling of sporadic jobs.

© R. Bettati
EDF-Scheduling of Accepted Jobs
T,
T,
periodic
tasks I
Ty
acceptance
fest priority
queue processor
reject
Em—— aperiodic —
© R. Bettati

CPSC-663: Real-Time Systems Clock-Driven Scheduling

Acceptance Test for EDF-Scheduled Sporadic Jobs

e Sporadic Job J with deadline d arrives:

e Test l: Test whether current amount of slack before d is
enough to accommodate J. (*)
If not, reject!

o Test 2: Test whether sporadic jobs still in system with
deadlines after d will miss deadline if T
is accepted. (**)
If yes, reject!

e Accept!
e (*) Define S(7): Amount of slack up to time d; after J; has

been scheduled.
e (**) Update all 5(7) with d. > d, that is,

Vi such that d; >d: S(J;)=5(J;) —e

© R. Bettati

Accept. Test for EDF Spor. Jobs (Implementation)

e Define
S, « slack in Frames F, ..., F;

e Precompute all S, in first major cycle
e Initial amounts of slack in later cycles can be computed as
SiuirkesE = Sip + Sy + F-4)S,r

e Compute current slack of job with release time in £, ; and deadline
in F:
S = Ser = Zakeay@h(€)

e Implementation:
- Initially compute S_, for newly arriving job. If negative, reject.

- Whenever job with earlier deadline arrives, decrease this value.
If negative, reject new job.

© R. Bettati

CPSC-663: Real-Time Systems Clock-Driven Scheduling

Static Scheduling of Jobs in Frames

e Layout of task schedule for cyclic executive can be formulated as a
schedule for jobs in a hyperperiod.

e This can be formulated as a network flow problem.

Source Sink

© R. Bettati

Pros and Cons of Clock-Driven Scheduling

e Pros:
- Conceptual simplicity
- Timing constraints can be checked and enforced at frame
boundaries.

- Preemption cost can be kept small by having appropriate frame
sizes.

- Easy to validate: Execution times of slices known a priori.

e Cons:
- Difficult to maintain.
- Does not allow to integrate hard and soft deadlines.

© R. Bettati

CPSC-663: Real-Time Systems Clock-Driven Scheduling

Putting the Cyclic Executive into Practice

T. P. Baker, Alan Shaw, “The Cyclic Executive Model and Ada”

e Implementation approaches for a Cyclic Executive: Solutions and
Difficulties

Naive solution using the DELAY statement

Using an interrupt from a hardware clock

Dealing with lost or buffered interrupts

Handling frame overruns

© R. Bettati

Naive Solution Using the DELAY Statement

task CYCLIC_EXECUTIVE_1;

task body CYCLIC_EXECUTIVE_1 is
use CALENDAR;
INTERVAL: constant:= Q.01;
NEXT_TIME: TIME:= CLOCK + INTERVAL;
FRAME_NUMBER: INTEGER:= 1;
begin loop delay REXT_TIME - CLOCK;
FRAME_NUMBER :=(FRAME_NUMBER+1) mod 2;
case FRAME_NUMBER is
when O=> A; B; C; D1;
when 1=> 4; B; D2;
end case;
NEXT_TIME:= NEXT_TIME + INTERVAL;
if CLOCK>NEXT_TIME
then HANDLE_FRAME_OVERRUN; end if;
end loop;
end CYCLIC_EXECUTIVE_1;

Source: T. P. Baker, Alan Shaw, “The Cyclic Executive Model and Ada”

© R. Bettati

CPSC-663: Real-Time Systems Clock-Driven Scheduling

Using an Interrupt from a Hardware Clock

task CYCLIC_EXECUTIVE_2 is

entry TIMER_INTERRUPT;

for TIMER_INTERRUPT’address use at TIMER’address;
end CYCLIC~-EXECUTIVE_2;

task body CYCLIC_EXECUTIVE_2 is
FRAME_NUMBER: INTEGER:= 1;

begin loop accept TIMER_INTERRUPT;
FRAME_NUMBER :=(FRAME_NUMBER+1) mod 2;
case FRAME_NUMBER is
when O=> A; B; C; D1;
when 1=> A; B; D2;
end case;

end loop;
end CYCLIC_EXECUTIVE_2;

Source: T. P. Baker, Alan Shaw, “The Cyclic Executive Model and Ada”

© R. Bettati

Dealing with Lost or Buffered Interrupts

task CYCLIC_EXECUTIVE_3 is -- the task that
-- controls timing
entry TIMER_INTERRUPT;
for TIMER_INTERRUPT’address use at TIMER’address;
pragma PRIORITY(SYSTEM. PRIORITY’last);
end CYCLIC_EXECUTIVE_3;

task ACTION is -~ the task that does the work
entry NEXT_FRAME;
end ACTION;

task body CYCLIC_EXECUTIVE 3 is
begin loop accept TIMER_INTERRUPT;
select ACTION.NEXT_FRAME;
else HANDLE_FRAME_OVERRUN;
end select;
end loop;
end CYCLIC_EXECUTIVE_3;

task body ACTION is
FRAME_NUMBER: INTEGER:=1;

begin loop accept NEXT_FRAME;
FRAME_NUMBER :=(FRAME_NUMBER+1) mod 2;
case FRAME_NUMBER is
when O=> A; B; C; D1;
when 1=> A; B; D2;
end case;

end loop; Source: T. P. Baker, Alan Shaw, “The Cyclic Executive Model and Ada”
end ACTION;

© R. Bettati

CPSC-663: Real-Time Systems

Clock-Driven Scheduling

Handling Frame Overruns (I)

ABORTION:

task type ACTION is -- the task that does the work
entry NEXT_FRAME;
end ACTION;

type ACCESS_ACTION is access ACTION;
CURRENT_ACTION: ACCESS_ACTION:= new ACTION;

task body CYCLIC_EXECUTLIVE_S is
begin loop accept TIMER_INTERRUPT;
select CURRENT_ACTION.NEXT_FRAME;
else abort CURRENT_ACTION;
CURRENT_ACTION:= new ACTION;
end select;
end loop;
end CYCLIC_EXECUTIVE.S;

Source: T. P. Baker, Alan Shaw, “The Cyclic Executive Model and Ada”

© R. Bettati

Handling Frame Overruns (II)

EXCEPTIONS:

task body CYCLIC_EXECUTIVE_6 is
begin loop accept TIMER_INTERRUPT;
select ACTION.NEXT_FRAME;
else raise ACTION’failure;
end select;
end loop;
end CYCLIC_EXECUTIVE.G;

task body ACTION is
FRAME_NUMBER: INTEGER:= 1;
begin loop accept NEXT_FRAME;
begin FRAME_NUMBER : =(FRAME_NUMBER+1) mod 2;
case FRAME_NUMBER is
when 0=> A; B; C; D1;
when 1=> A; B; D2;
end case;
exception when others=> RECOVER_FROM_OVERRUN;
end;
end loop;
end ACTION;

Source: T. P. Baker, Alan Shaw, “The Cyclic Executive Model and Ada”

© R. Bettati

10

