

Static-Priority vs. Dynamic Priority

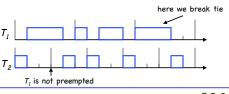
- Static-Priority: All jobs in task have same priority.
- Example: Rate-Monotonic:

"The shorter the period, the higher the priority."

```
T_1 = (5, 3, 5)
T_2 = (3, 1, 3)
T_3 = (5, 3, 5)
```

- Dynamic-Priority: May assign different priorities to individual jobs.
- Example: Earliest-Deadline-First:

"The nearer the absolute deadline, the higher the priority."



© R. Bettati

Example Algorithms

- Static-Priority:
 - Rate-Monotonic (RM): "The shorter the period, the higher the priority." [Liu+Layland '73]
 - Deadline-Monotonic (DM): "The shorter the relative deadline, the higher the priority." [Leung+Whitehead '82]
- For arbitrary relative deadlines, DM outperforms RM.
- Dynamic-Priority:
 - EDF: Earliest-Deadline-First.
 - LST: Least-Slack-Time-First.
 - FIFO/LIFO
 - etc.

Considerations about Priority Scheduling

Question: What makes for a good scheduling algorithm?

Def: [Schedulable Utilization]

Every set of periodic tasks with total utilization less or equal than the schedulable utilization of an algorithm can be feasibly scheduled by that algorithm.

Two observations:

- 1. The higher the schedulable utilization, the better the algorithm.
- 2. Schedulable utilization is always less or equal 1.0!

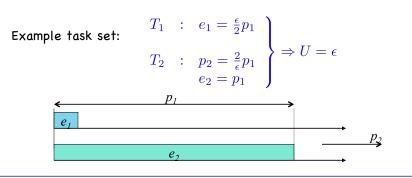
© R. Bettati

Schedulable Utilization of FIFO

Theorem: $U_{FIFO} = 0$

Proof:

Given any utilization level $\mathcal{E} > 0$, we can find a task set, with utilization \mathcal{E} , that may not be feasibly scheduled according to FIFO.



Optimality of EDF for Periodic Systems

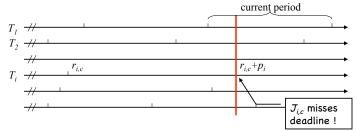
Theorem: EDF can feasibly schedule a system of independent preemptable tasks with relative deadlines equal to their periods *iff* their total utilization is less or equal 1.

- Proof: only-if: obvious
 if: show that if EDF fails to find feasible
 schedule, then the total utilization must
 exceed 1.
- Assumptions:
 - At some time t, Job $J_{i,c}$ of Task T_i misses its deadline.
 - WLOG: if more than one job have deadline t, break tie for $J_{i,c}$.

© R. Bettati

Optimality of EDF (cont)

- Case 1: Current period of every task begins at or after r_{ic} .
- Case 2: Current period of some task may start before r_{ic} .
- Case 1:



 Current jobs other than J_{i,c} do not execute before time t.

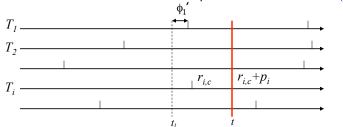
$$\begin{array}{rcl} t & < & \frac{(t-\phi_i)e_1}{p_i} + \sum_{k \neq i} \left\lfloor \frac{t-\phi_k}{p_k} \right\rfloor e_k \\ & \leq & t \cdot \frac{e_i}{p_i} + t \cdot \sum_{k \neq i} \frac{e_k}{p_k} \\ & = & t \cdot U \\ \Rightarrow & U > 1 \end{array}$$

Optimality of EDF (cont 2)

Some current periods start before $r_{i,c}$.

- Notation:

T: Set of all tasks. T': Set of tasks where current period starts <u>before</u> $r_{i,c}$. T-T': Set of tasks where current period start <u>at or after</u> $r_{i,c}$.



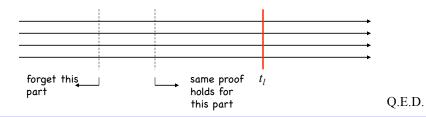
- t_i : Last point in time before t when some current job in T' is executed.
- No current job is executed immediately after time t_i .
- Why?
- 1. All jobs in T' are done.
- 2. Jobs in T-T' not yet ready.

© R. Bettati

Case 2 (cont)

$$\begin{array}{rcl} t - t_l & < & \frac{(t - t_l - \phi_i')e_1}{p_i} + \sum_{k \neq i} \lfloor \frac{t - t_l - \phi_k}{p_k} \rfloor e_k \\ & \leq & (t - t_l) \cdot \frac{e_i}{p_i} + (t - t_l) \cdot \sum_{k \neq i} \frac{e_k}{p_k} \\ & = & (t - t_l) \cdot U \\ \Rightarrow & U > 1 \end{array}$$

• What about assumption that processor never idle?



What about Static Priority?

- Static-Priority is not optimal!
- Example:

$$T_{1} = (2, 1, 2)$$

$$T_{2} = (5, 2.5, 5)$$

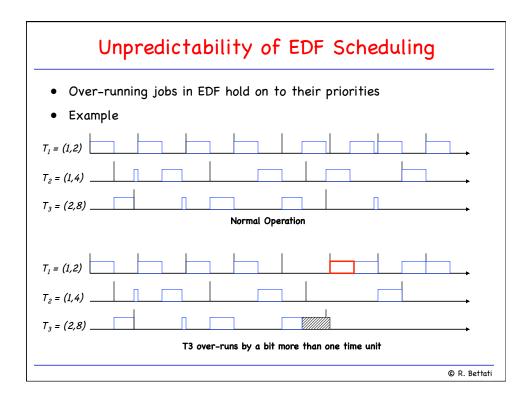
$$U = \frac{e_{1}}{p_{1}} + \frac{e_{2}}{p_{2}} = 1 \le 100\%$$

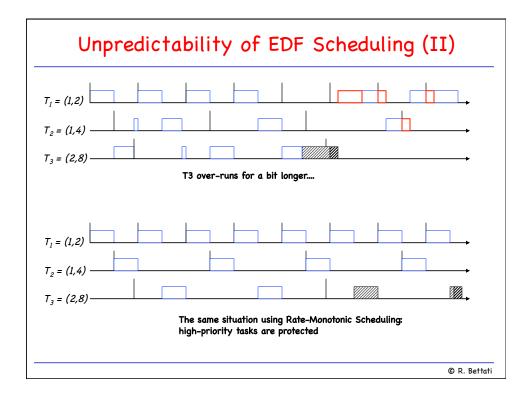
$$T_{1}$$

$$T_{2}$$

$$J_{1,3} \text{ must have lower priority than } J_{2,1}!$$

- So: Why bother with static-priority?
 - simplicity
 - predictability





Schedulability Bounds for Static-Priority

Definition: A set of tasks is **simply periodic** if, for every pair of tasks, one period is multiple of another period.

Theorem: A system of simply periodic, independent, preemptable tasks whose relative deadlines are equal to their periods is schedulable according to RM iff their total utilization does not exceed 100%.

Proof: Assume T_i misses deadline at time t. t is integer multiple of p_i .

t is also integer multiple of p_k , $\forall p_k < p_i$.

 $\forall p_k < p_i$.

Utilization due to *i* highest-priority tasks

with deadline t:

=> total time to complete jobs with deadline t:

$$\sum_{k=1}^{i} \frac{t \cdot e_k}{p_k} = t \cdot U_i = t \cdot \sum_{k=1}^{i} \frac{e_k}{p_k}$$

If job of T_i misses deadline, then $U_i > 1 \Rightarrow U > 1$.

Q.E.D.

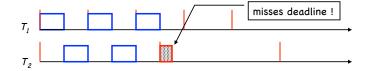
Schedulable Utilization of Tasks with $D_i=p_i$ with Rate-Monotonic Algorithm

Theorem: [Liu&Layland '73] A system of n independent, preemptable periodic tasks with $D_{j}=p_{j}$ can be feasibly scheduled by the RM algorithm if its total utilization U is less or equal to $U_{RM}(n) = n(2^{1/n}-1)$.

Why not 1.0? Counterexample:

$$T_1 = (2, 1, 2)$$

 $T_2 = (5, 2.5, 5)$



Proof Outline: First, show that theorem is correct for special case where longest period $p_n < 2p_1$ (p_1 = shortest period). We will remove this restriction later.

© R. Bettati

Proof of Liu&Layland

- General idea: Find the most-difficult-to-schedule system of n tasks among all difficult-to-schedule systems of n tasks.
- Difficult-to-schedule: Fully utilizes processor for some time interval. Any increase in execution time would make system unschedulable.
- Most-difficult-to-schedule: system with lowest utilization among difficult-to-schedule systems.
- Each of the following 4 steps brings us closer to this system.

Proof of Liu&Layland (cont)

Step 1: Identify phases of tasks in most-difficult-to-schedule system.

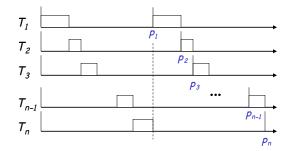
System must be in-phase. (talk about this later)

© R. Bettati

Proof of Liu&Layland (cont)

Step 2: Choose relationship between periods and execution times.
Hypothesize that parameters of MDTS system are thus related.

- Confine attention to first period of each task.
- Tasks keep processor busy until end of period p_a .



 $e_k = p_{k+1} - p_k$ $e_n = p_n - 2 \sum_{k=1}^{n-1} e_k$

call this <u>Property A</u>

Proof Liu&Layland (cont)

Step 3: Show that any set of D-T-S tasks that are not related according to Property A has higher utilization.

- What happens if we deviate from Property A?
- Deviate one way: Increase execution of some high-priority task by ϵ :

 $\mathbf{e'}_1 = \mathbf{e}_1 + \mathbf{\epsilon} = \mathbf{p}_2 - \mathbf{p}_1 + \mathbf{\epsilon}$

Must $\underline{\text{reduce}}$ execution time $\underline{\text{of some other}}$ task:

$$e'_{k} = e_{k} - \varepsilon$$

$$U' - U = \frac{e_1'}{p_1} + \frac{e_k'}{p_k} - \frac{e_1}{p_1} - \frac{e_k}{p_k} = \frac{\epsilon}{p_1} - \frac{\epsilon}{p_k} > 0$$

© R. Bettati

Proof Liu&Layland (cont)

• Deviate the other way:

Reduce execution time of some high-priority tasks by ϵ :

$$e_1''=e_1-\epsilon=p_2-p_1-\epsilon$$

Must <u>increase</u> execution time of some lowerpriority task:

$$e_k'' = e_k + 2\epsilon$$

$$U'' - U = \frac{2\epsilon}{p_k} - \frac{\epsilon}{p_1} > 0$$

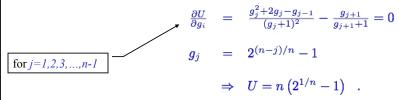
Proof Liu&Layland (cont)

Step 4: Express the total utilization of the M-D-T-S task system (which has Property A).

 $\bullet \quad \text{Define} \qquad g_i := \frac{p_n - p_i}{p_i} \Rightarrow \left\{ \begin{array}{lcl} e_i & = & g_i p_i - g_{i+1} p_{i+1} \\ e_n & = & p_n - 2g_1 p_1 \end{array} \right.$

$$U = \sum_{i=1}^{n} \frac{e_i}{p_i} = \sum_{i=1}^{n-1} \left\{ g_i - g_{i+1} \frac{p_{i+1}}{p_i} \right\} + 1 - 2g_1 \frac{p_1}{p_n} = 1 + g_1 \frac{g_1 - 1}{g_1 + 1} + \sum_{i=2}^{n-1} g_i \frac{g_i - g_{i-1}}{g_i + 1}$$

• Find least upper bound on utilization: Set first derivative of U with respect to each of g_i 's to zero:



© R. Bettati

What about Period Ratios > 2?

- We show: 1. Every D-T-S task system T with period ratio > 2
 can be transformed into D-T-S task system T'
 with period ratio <= 2.
 - 2. The total utilization of the task set decreases during the transformation step.
- We can therefore confine search to systems with period ratio < 2.
- Transformation $\emph{T->T'}$: while $\exists T_k$ with $l \cdot p_k < p_n \leq (l+1)p_k$ $(l \geq 2)$ $T_k(p_k,e_k) \quad \rightarrow \quad (l \cdot p_k,e_k)$ $T_n(p_n,e_n) \quad \rightarrow \quad (p_n,e_n+(l-1)e_k)$ end
- Compare utilizations:

$$U - U' = \frac{e_k}{p_k} + \frac{e_n}{p_n} - \frac{e_k}{l \cdot p_k} - \frac{e_n + (l-1)e_k}{p_n} = \frac{e_k}{p_k} - \frac{e_k}{l \cdot p_k} - \frac{(l-1)e_k}{p_n}$$

$$= \left(\frac{1}{l \cdot p_k} - \frac{1}{p_n}\right)(l-1)e_k > 0$$

Q.E.D.

That Little Question about the Phasing...

Definition: [Critical Instant]

[Liu&Layland] If the maximum response time of all jobs in T_i is less than D_i , then the job of T_i released in the critical instant has the maximum response time.

[Baker] If the response time of some jobs in T_i exceeds D_i , then the response time of the job released during the critical instant exceeds D_i .

Theorem: In a fixed-priority system where every job completes before the next job in the same task is released, a critical instant of a task T_i occurs when one of its jobs $J_{i,c}$ is released at the same time with a job of every higher-priority task.

© R. Bettati

Proof (informal)

• Assume: Theorem holds for k < i.

• WLOG: $\forall k < i : \phi_k = 0$, and we look at $J_{i,i}$.

Observation: The completion time of higher-priority jobs is

independent of the release time of $J_{i,l}$.

• Therefore: The sooner $J_{i,1}$ is released, the longer it has

to wait until it is completed.

Q.E.D.

Proof 2 (less informal)

- WLOG: $\min\{\phi_k \mid k = 1, ..., i\} = 0$
- Observation: Need only consider time processor is busy executing jobs in $T_1, T_2, ..., T_{i-1}$ before ϕ_i .

 If processor idle or executes lower-priority jobs, ignore that portion of schedule and redefine the ϕ_k 's.
- Let R_{ij} be the response time for J_{ij} .
- During $[\phi_k, \phi_i + R_{i,l}]$ a total of $[(R_{i,l} + \phi_i \phi_k) / p_k]$ jobs of T_k become ready for execution.
- so (time-demand analysis): $R_{i,1}+\phi_i=e_i+\sum_{k=1}^{i-1}\lceil rac{R_{i,1}+\phi_i-\phi_k}{p_k}
 ceile_e$
- \bullet and: $R_{i,1}=e_i+\sum_{k=1}^{i-1}\lceil\frac{R_{i,1}+\phi_i-\phi_k}{p_k}\rceil e_k-\phi_i$

© R. Bettati

Optimal Static-Priority Scheduling

Theorem: If a task set can be feasibly scheduled by some static-priority algorithm, it can be feasibly scheduled by DM.

[J.Y.-T.Leung, J. Whitehead, "On the complexity of Fixed-Priority Scheduling of Periodic, Real-Time Tasks", Performance Evaluation 2, 1982.]

Proof:

- Assume: A feasible schedule S exists for a task set T. The priority assignment is T_1 , T_2 , ..., T_n . For some k, we have $D_k > D_{k+1}$.
- We show that we can swap the priority of T_k and T_{k+1} and the resulting schedule call it S(k) remains feasible.

Optimality of DM: Proof (II)

- So, you want to swap the priority of T_k and T_{k+1} ?!
- Observation: Response time for each task other than T_k and T_{k+1} is the same in S and S(k).
- Observation: Response time of T_{k+1} in S(k) must be smaller than in S, since T_{k+1} is not delayed by T_k in S(k).
- Thus: Must prove that deadline of first invocation of T_k is also met in S(k). (Critical Instant)
- Let x be the amount of work done in S for all tasks in $T_1, ..., T_{k-1}$ during interval $[0, d_{k+1}]$.
- Note: Amount of work done in S and S(k) for tasks in $T_1, ..., T_{k-1}$ is at most x during any interval of length d_{k+1} .
- We must have

$$x + e_k + e_{k+1} \le d_{k+1}$$

© R. Bettati

Optimality of DM: Proof(III)

- Observation: Number of invocations of T_{k+1} in Schedule S(k) during interval $[0, \lfloor d_k/d_{k+1} \rfloor^k d_{k+1}]$ is at most $\lfloor d_k/d_{k+1} \rfloor$.
- Observation: Amount of work for all tasks in $T_1,...,T_{k-1}$ in the interval $[0,\lfloor d_k/d_{k+1}\rfloor^*d_{k+1}]$ is at most $\lfloor d_k/d_{k+1}\rfloor^*x$.
- The following condition is sufficient of guarantee that the deadline of the first request of T_k is met in S(k):

$$[d_k/d_{k+1}]^* (x+e_{k+1}) + e_k \le [d_k/d_{k+1}]^* d_{k+1}$$

This, however, follows from inequality on previous page. (qed)

Why Utilization-Based Tests?

- If no parameter ever varies, we could use simulation.
- But:
 - Execution times may be smaller than e_i
 - Inter-release times may vary.
- Tests are still <u>robust</u>.
- Useful as methodology to define execution times or periods.

© R. Bettati

Time-Demand Analysis

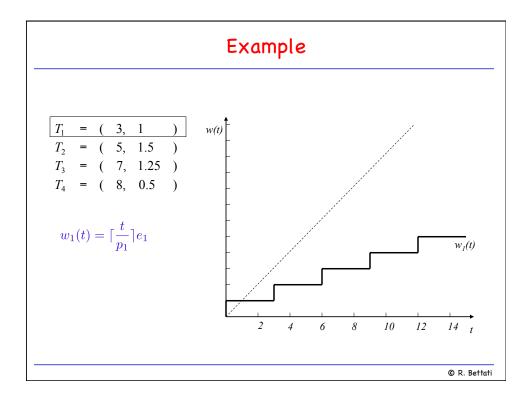
- Compute total demand on processor time of job released at a critical instant and by higher-priority tasks as function of time from the critical instant.
- Check whether demand can be met before deadline.
- Determine whether T_i is schedulable:
 - Focus on a job in T_{i} , suppose release time is critical instant of T_{i} : $w_{i}(t)$: Processor-time demand of this job and all higherpriority jobs released in (t_{Oi}, t) :

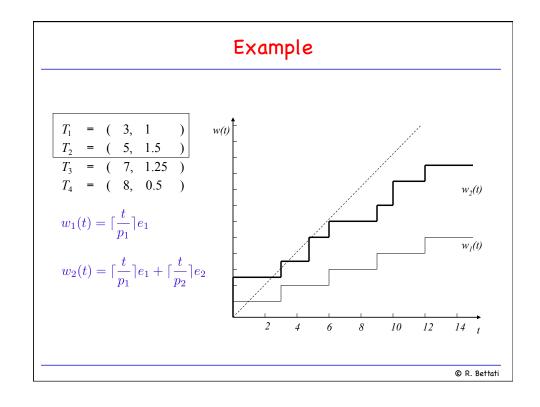
$$w_i(t) = e_i + \sum_{k=1}^{i-1} \lceil \frac{t}{p_k} \rceil e_k$$

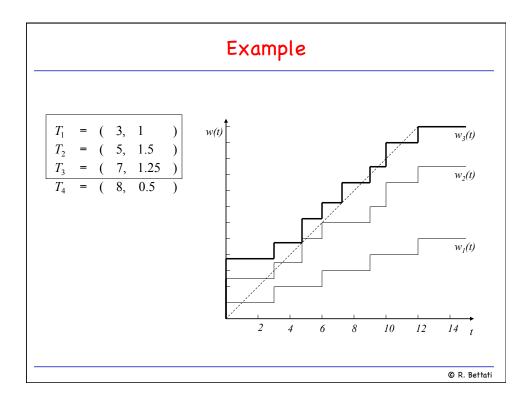
• This job in T_i meets its deadline if, for some

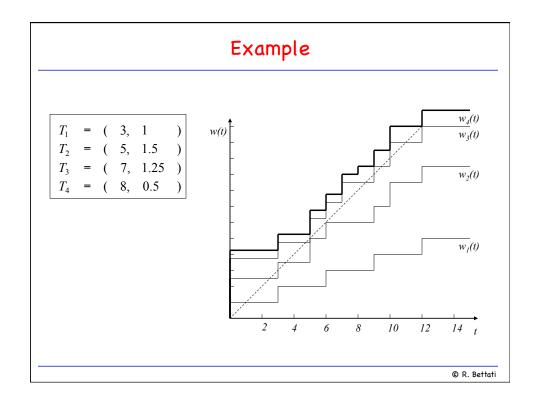
$$t_1 \leq D_i \leq p_i$$
 : $w_i(t_1) \leq t_1$

• If this does not hold, job cannot meet its deadline, and system of tasks is not schedulable by given static-priority algorithm.









Practical Factors

- Non-Preemptable Portions (*)
- Self-Suspension of Jobs (*)
- Context Switches (*)
- Insufficient Priority Resolutions (Limited Number of Distinct Priorities)
- Time-Driven Implementation of Scheduler (Tick Scheduling)
- Varying Priorities in Fixed-Priority Systems

© R. Bettati

Practical Factors I: Non-Preemptability

• Jobs, or portions thereof, may be non-preemptable.

Definition: [non-preemptable portion] Let's denote by ρ_I the largest non-preemptable portion of jobs in \mathcal{T}_i .

Definition: A job is said to be **blocked** if it is prevented from executing by lower-priority job. (priority-inversion)

- When testing schedulability of a task T_{ij} , we must consider
 - higher-priority tasks

and

- non-preemptable portions of lower-priority tasks

Analysis with Non-Preemptable Portions

Definition: The blocking time b_i of Task T_i is the longest time by which any job of T_i can be blocked by lower-priority jobs:

 $b_i = \max_{i+1 \le k \le n} \rho_k$

Time-demand function with blocking:

$$w_i(t) = e_i + b_i + \sum_{i=1}^{i-1} \lceil rac{t}{p_k}
ceil e_k$$

 $w_i(t)=e_i+b_i+\sum_{k=1}^{i-1}\lceil\frac{t}{p_k}\rceil e_k$ Utilization bounds with blocking: test one task at a time:

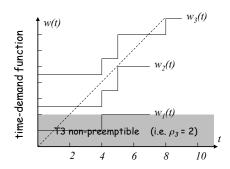
$$\frac{e_1}{p_1} + \frac{e_2}{p_2} + \ldots + \frac{e_i + b_i}{p_i} = \sum_{k=1}^i \frac{e_k}{p_k} + \frac{b_i}{p_i} \le U_{RM}(i)$$

© R. Bettati

Non-Preemptability: Example

$$T_1 = (4, 1)$$

 $T_2 = (5, 1.5)$
 $T_3 = (9, 2)$



Practical Factors II: Self-Suspension

Definition: Self-suspension of a job occurs when the job waits for an external operation to complete (RPC, I/O operation).

- Assumption: We know the maximum length of external operation; i.e., the duration of self-suspension is bounded.
- Example: $T_{I} = (\phi_{I} = 0, p_{I} = 4, e_{I} = 2.5)$

• Analysis: b_i^{SS} : Blocking time of T_i due to self-suspension.

$$b_i^{SS} = \max$$
. self-suspension time of T_i
 $+\sum_{k=1}^{i-1} \min(e_k, \max. \text{ self-suspension time of } T_k)$

© R. Bettati

Self-Suspension with Non-Preemptable Portions

- Whenever job self-suspends, it loses the processor.
- When tries to re-acquire processor, it may be blocked by tasks in non-preemptable portions.
- Analysis: b^{NP} ; Blocking time due to non-preemptable portions
 - K: Max. number of self-suspensions
 - b;: Total blocking time

$$b_i = b^{SS}_i + (K_i + 1) b^{NP}_i$$

Practical Factors III: Context Switches

Definition: [Job-level fixed priority assignment]

In a job-level fixed priority assignment, each job is given a fixed priority for its entire execution.

- Case I: No self-suspension
 - In a job-level fixed-priority system, each job preempts at most one other job.
 - Each job therefore causes at most two context switches
 - Therefore: Add the context switch time twice to the execution time of job: $e_i = e_i + 2 CS$
- Case II: Self-suspensions can occur
 - Each job suffers two more context switches each time it selfsuspends
 - Therefore: Add more context switch times appropriately:

$$e_i = e_i + 2 (K_i + 1) CS$$