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Common Approaches to Real-Time Scheduling

• Clock-driven (time-driven) schedulers

• Priority-driven schedulers

• Examples of priority driven schedulers

• Effective timing constraints

• The Earliest-Deadline-First (EDF) Scheduler and its optimality

Common Approaches to Real-Time Scheduling

• Clock-driven (time-driven) schedulers
– Scheduling decisions are made at specific time instants, which

are typically chosen a priori.

• Priority-driven schedulers
– Scheduling decisions are made when particular events in the

system occur, e.g.
• a job becomes available
• processor becomes idle

– Work-conserving: processor is busy whenever there is work to
be done.
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Clock-Driven (Time-Driven) -- Overview

• Scheduling decision time:  point in time when scheduler decides
which job to execute next.

• Scheduling decision time in clock-driven schedulers is defined a
priori.

• For example: Scheduler periodically wakes up and generates a
portion of the schedule.

• Special case: When job parameters are known a priori, schedule
can be pre-computed off-line, and stored as a table (table-driven
schedulers).

A B C D C A C

scheduler job

Priority-Driven -- Overview

• Basic rule: Never leave processor idle when there is work to be
done. (such schedulers are also called work conserving)

• Based on list-driven, greedy scheduling.
• Examples:  FIFO, LIFO, SET, LET, EDF.

• Possible implementation of preemptive priority-driven scheduling:
– Assign priorities to jobs.
– Scheduling decisions are made when

• Job becomes ready
• Processor becomes idle
• Priorities of jobs change

– At each scheduling decision time, choose ready task with
highest priority.

• In non-preemptive case, scheduling decisions are made only when
processor becomes idle.
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Scheduling Decisions

• Scheduling decision points:
1. The running process changes from running to waiting (current CPU

burst of that process is over).
2. The running process terminates.
3. A waiting process becomes ready (new CPU burst of that process

begins).
4. The current process switches from running to ready .

ready running

waiting
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Example: Priority-Driven Non-Preemptive Schedules

J1 : 1 J2 : 2 J3 : 1 J4 : 1

J5 : 3

J8 : 3

J6 : 2

J7 : 1

Proc1
J1 J2 J3 J6 J4

Proc2
J5 J8 J7

L = (J1 , J2 , J3 , J4 , J5 , J6 , J7 , J8 )

Proc1
J5 J2J1 J6 J4

Proc2
J8 J7

LET = (J5 , J8 , J2 , J6 , J1 , J3 , J4 , J7 )

J3

Proc1
J5

J2J1 J6

J4

Proc2

J8

J7

L = (J8 , J1 , J2 , J3 , J4 , J5 , J6 , J7 )

J3

execution time

job ID
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Example: Priority-Driven Non-Preemptive Schedules

J1 :1 J2 :2 J3 :1 J4 :1

J5 :3

J8 :3

J6 :2

J7 :1

Proc1
J1 J2 J3 J6 J4

Proc2
J5 J8 J7

L = (J1 , J2 , J3 , J4 , J5 , J6 , J7 , J8 )

Example: Priority-Driven Non-Preemptive Schedules

J1 :1 J2 :2 J3 :1 J4 :1

J5 :3

J8 :3

J6 :2

J7 :1
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J5 J2J1 J6 J4
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J8 J7

LET = (J5 , J8 , J2 , J6 , J1 , J3 , J4 , J7 )

J3
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Example: Priority-Driven Non-Preemptive Schedules
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Effective Timing Constraints

• Timing constraints often inconsistent with precedence constraints.
Example: d1 > d2 , but J1 → J2

• Effective timing constraints on single processor:

• Effective release time: ri
eff := max {ri, {rj

eff | Jj → Ji})

• Effective deadline:  di
eff := min {di, {rj

eff | Jj → Ji})

• Theorem:  A set of Jobs J can be feasibly scheduled on a
processor if and only if it can be feasibly scheduled
to meet all effective release times and deadlines.

Interlude: The EDF Algorithm

• The EDF (Earliest-Deadline-First) Algorithm:

At any time, execute that available job
with the earliest deadline.

• Theorem: (Optimality of EDF) In a system one processor and 
with preemptions allowed, EDF can produce a feasible
schedule of a job set J with arbitrary release times
and deadlines iff such a schedule exists.

• Proof:  by schedule transformation.
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Proof of Optimality of EDF

• Assume that arbitrary schedule S meets timing constraints.

• For S  to not be an EDF schedule, we must have the following
situation:

portion of Jj portion of Ji

di djri, rj

interval A interval B

S is EDF up to here

Proof of Optimality of EDF (2)

• We now have two cases.

• Case 1: L(A) > L(B)

di djri, rj

A B

portion of Jj

B

portion of Ji
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Proof of Optimality of EDF (3)

• We now have two cases.

• Case 2: L(A) <= L(B)

portion of Ji

di djri, rj

A B

A

portion of Jj

EDF Not Always Optimal

• Case 1: When preemption is not allowed:

• Case 2: On more than one processor:

edr
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Preemptive Scheduling of Jobs with Arbitrary Release Times,
Deadlines, Execution Times

• Determine schedule over a hyperperiod.
• Formulate scheduling problem as network flow problem.

I1

I2

Ij

Im-1

Im

Sink

J1

J2

Ji

Jn-1

Jn

Source
...
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ei Ij
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NP Completeness of Non-Preempt Deadline Scheduling

• Theorem: The problem of scheduling a non-preemptable set of
jobs J1, ..., Ji, ... Jn, each with release time ri,
deadline di, and execution time ei is NP-complete.

• Proof: Transformation from PARTITION [Garey/Johnson,1979]
Given: Finite set A = {A1, ..., Ai, ..., Am}, each element of size ai.

Let
Partition A into two sets, each of same size.

Define a job set J1, ..., Jm+1, as follows:

B/2

Jm+1

B/2 B/2+10 B+1

B/2


