CPSC-663: Real-Time Systems Windows NT/2000 and Real-Time

Windows NT and Real-Time?

e Reading: “Inside Microsoft Windows 2000”, (Solomon, Russinovich,
Microsoft Programming Series)

e “Real-Time Systems and Microsoft Windows NT” (MSDN Library)

e “Windows XP with RTX - The off-the-shelf platform for
Integrated Communication Equipment” (www.venturcom.com)

Priorities in Windows NT/2000

Priority Spectrum

Real-time time-critical Real-time
classes

Real time normal
System levels like inp ut,

cursor, cache flushing,
file sys., drivers

I e
15-Nonreal-time/ [y is 15 Dynamic
el 13-High fareground. [| 1 classes
9- Normal foreground ll: 2
7-Normal background Ii l ;
4-Low foreground/h: 1
1-Nonreal time/ille SN
0-Idle thread °

CPSC-663: Real-Time Systems Windows NT/2000 and Real-Time

IO System Components (Windows 2k)

Applications WH?32
Services
user-mode I
WMI PP . N setup
service components
manager inf files
user mode | cat files
registry
kernel mode
I/O system ;--z---y------- oo go--ooooeoo oo T
i | WDM WMI PnP Power 1/0 ;
: routines manager manager manager E
drivers poomoieeeoioeeo- t

Device Driver Layering

Environment

or DLL

(@ wine cema a1 specised

ty%e ottset witin o e o

Flie system |~ 3
ariver i~
-

@ Tronsire te-roiatve byt %

ot into & diak-ridatnm '

L}

.

Lyt oltset and cal nest
dover (via O manager) N
.
— —
Dakdriver | (2) Cak artar to write datn
o Cub-ruatve Syt oftsel

(@) Trensare diss-retive tyh
oftsel Mo plvescal location
nd trnsher dana

CPSC-663: Real-Time Systems Windows NT/2000 and Real-Time

Device Driver Layering (2)

Erwvronment

or DLL
User made

Keenel mode
(D Mwrwssiite_hand, char_tutvr)

~\
I System services

@ wreo data at specties
lr et weiun & e w

menoger
s
.
.

@ Tronsase e o yte .

ofset © 3 Gukcelyber .

o et and <l ot \

[N dewer (via VO manaper) .
'
'
’

@ Cal st s 10 wite
| data 31 cwkomarre Eyle h

| otset ':
= Votuma -
manager dis .
driver ’.‘

® Transkans cakaliive
Byt ofset i dek
rusmn ard otuee, and
ol r dwer [via 4O
managed; .

(@) Ca st e 10 weite:
Gty o ek 3 o sk
redaive by o

@ Transtste duk-rwaran byte clsel into phyvical
DEALIDN 0% Ak 3 a0 Furstee deta

Primary Device Driver Routines

e NT/2000 device drivers run entirely within the system process and have
access to all hardware through the HAL. A typical device driver will have

several components:

e Initialization routine This routine
initializes hardware and sets up

dispatch start /O data s’rrucfu.res used by the driver
routines routine at starfup fime.

e Interrupt service routine (ISR) This
routine handles an interrupt on the
device that the device driver
controls.

-] e Deferred processing call (DPC) One
add-device interrupt or more DPCs handle non-time-
routine service routine critical processing for the driver.

e System thread Some, but not all,
drivers will have a system thread
for very low- priority work.

1n1t1ah;at10n DPC routine
routine

CPSC-663: Real-Time Systems Windows NT/2000 and Real-Time

Control Flow for an IO Operation

Call ReadFile () Application

v

Call NTReadFile ()
return to caller

ReadFile
Kernel32.dll

NtReadFile L
INT 2E

return to caller

Ntdll.dll
User mode

Kernel mode

KiSystemService
Call NTReadFile ()

dismiss interrupt Ntoskrnl.exe

NtReadFile L
Whether to wait depends | Invoke driver Ntoskrnl.exe
on overlappe d fla g dismiss interrupt

l

Initiate 1/O operation
dismiss interrupt

Driver.sys

Queueing and Completing a Synchronous Request

@ 1/0 request passes

through subsystem DLL Environment
subsystem or
DLL ‘
® NtWriteFile(file_handle, ..., ; @ Complete IRP and return
char_buffer) success or error status
User mode
\ } Kernel mode
Services
/O manager
@ Create IRP and send
it to device driver
@ Handle interrupt and
return success or
error status
Device
driver

@ Transfer data
specified in IRP

® Perform 10 and
interrupt

CPSC-663: Real-Time Systems Windows NT/2000 and Real-Time

Servicing a Device Interrupt (only Phase I)

Device driver

DPC

Dispatch | giart yo 1SR routine(s)

routine(s)

@ The ISR stops the device
interrupt and queues a DPC.
.

ore @ The kemet's interrupt
dispatcher transfers control
1o the device's service routine.
High
© The device :
interrupts for Device IRQL -
service.
DPCdispatch
APC
Passive
IRQL

Servicing a Device Interrupt (Phase II)

Device driver

Dispatch DPC
routine(s) | Starti0 ISR routine(s)

@ The DPC routine starts the next O
request in the device queue and
then completes interrupt servicing.

- >(Ee sy -,
Device queue M
@ The interrupt dispatcher
transfers control to the
driver's DPC routine.

High
Device IRQL
(@ The IRQL drops, and
DPC processing oczurs. DPCldispatch -
e Passive
.
.
' IRGL
.
*~ {oec)<- -
DPC queue

CPSC-663: Real-Time Systems Windows NT/2000 and Real-Time

Completing an I/0 Request (Phase I)

O manager

L 1
N\

@ The DPC routine calls the I/O
manager to complete the
original I/O request.

@ The I/O manager queues an
APC to compiete the /O request
in the caller’s context.

Device driver

Dispatch | giart O ISR DPC
routine(s) routine(s)

IRP IRP
Tiwead‘s APC quoun‘

Completing an I/0 Request (Phase II)

Environment
subsystem or
DLL
User mode
Kernel mode
VO manager

APC @ The kernel-mode

routine APC routine writes
data to the thread's
address space, sets

-

High the original file
handle to the
signaled state,
queues any user-
mode APCs for
execution, and

Device printer disposes of the IRP.
(@ The next time the

caller's thread ‘ @ The interrupt

runs, an APC * dispatcher transfers

interrupt occurs. . control to the VO

manager's APC
AP DPC/dispatch routine.
- APC 1
) 4
APC Passive
Thread's APC queue IRQL

CPSC-663: Real-Time Systems Windows NT/2000 and Real-Time

Priority Levels vs. Interrupt Levels

e The HAL maps hardware-

interrupt numbers to IRQLs. 31: High N\
e IRQLs are not the same as :
IRQs in x86. 30: Power Fail
e Scheduling priority is 29: Inter-Processor Interrupt
attribute of thread, while 28: Clock
IRQL is attribute of an 27: Profile
interrupt source. 26: Device n > Hardware
e Lazy IRQL management for Interrupts
slow PICs.
® Code running at
DPC/dispatch level or above
can’t wait on object if so
would necessitate scheduler 3: Device 1 J
to invoke another thread. 2 DPC/dispatch } Software
Thread { 1: APC Interrupts
Priorities 0-31 0: Passive

Memory Management

e Paging I/0 occurs at a lower priority level than the real-time
priority process levels. Paging within the real-time process is still
free to occur, but this really ensures that background virtual
memory management won't interfere with processing at real-time
priorities.

e Windows NT permits an application to lock itself into memory so
that it is not affected by paging within its own process. This
allows even very large processes (such as raster image
processing, where some processes are over 100MB) to lock all
their memory down into physical memory and avoid the overhead
of paging, while allowing the rest of the system to function
normally.

e Windows NT memory management allows for memory mapping,
which permits multiple processes—even device drivers and user
applications—to share the same physical memory. This results in
very fast data transfers between cooperating processes or
between a driver and an application. Memory mapping can be
used to dramatically enhance real-time performance.

CPSC-663: Real-Time Systems Windows NT/2000 and Real-Time

Windows 2000/NT and Real-Time Processing

e Windows 2000/NT does not prioritize device IRQs in controllable
way.

e User-level applications execute only when a processor’s IRQL is
at passive level.

e System’s devices and device drivers - not the OS - ultimately
determine the worst-case delay.

e This is a problem with off-the-shelf hardware and drivers.

e System designer must bound the length of device’s ISR and DPC
in the worst case.

e Embedded versions of Windows NT/2000 provide control over
memory footprint etc, but are not real-time capable.

e Extensions of real-time kKernels can be provided through custom
extensions of the HAL.

VenturCom RTX Architecture

Real-time PP Real-time
Process 1 Process N
TCP/IP oo

DLL

RTX RTSS (RtWinAPI)

RTX Real-time HAL Extender

IA32 PC — UP or MP Hardware Platform

Figure 1: RTX Architecture

