
CPSC-663: Real-Time Systems Clock-Driven Scheduling

1

© R. Bettati�

Cyclic Schedules: General Structure�

•  Scheduling decision is made periodically: �

•  Scheduling decision is made periodically: �
–  choose which job to execute�
–  perform monitoring and enforcement operations�

•  Major Cycle: Frames in a hyperperiod.�

Frame f �

decision points�

hyperperiod H �

major cycle�

© R. Bettati�

Frame Size Constraints�

•  Frames must be sufficiently long so that every job can start and
complete within a single frame: �

•  The hyperperiod must have an integer number of frames: �

•  For monitoring purposes, frames must be sufficiently small that
between release time and deadline of every job there is at least
one frame: �

)max()1(ief ≥

)""()2(HdividesfHf

ii

i

i

Dfpf
fptt
Dttf

≤−

≥−

≤−−

),gcd(2)3(
),gcd('

)'(2

t t+f t+2f t+3f t’ t’+Di t’+pi

CPSC-663: Real-Time Systems Clock-Driven Scheduling

2

© R. Bettati�

Frame Sizes: Example�

•  Task set: �

660
)22,3,22(
)26,2,20(
)14,1,15(

3

2

1

=

=

=

=

H
T
T
T

6,5,4,3:for valuespossible

6,5,4,3,2),gcd(2:)3(
,..10,6,5,4,3,2)2(

3:)1(

f

fDifpifi
fHf
fefi i

⇒

=⇒≤−∀

=⇒

≥⇒≥∀

pi ei Di

© R. Bettati�

Slicing and Scheduling Blocks�

•  Slicing�

?!
4)3(
5)1(

)20,5,20(
)5,2,5(
)4,1,4(

3

2

1

⎭
⎬
⎫

≤⇒

≥⇒

=

=

=

f
f

T
T
T

4
4)3(
3)1(

)20,1,20(
)20,3,20(
)20,1,20(
)5,2,5(
)4,1,4(

33

32

31

2

1

=
⎭
⎬
⎫

≤⇒

≥⇒

=

=

=

=

=

f
f
f

T
T
T
T
Tslice

T3

1 31 1 1 1 1 2 2 2 2 33 32

0 4 8 12 16 20

…..

scheduling block

H

pi ei Di

CPSC-663: Real-Time Systems Clock-Driven Scheduling

3

© R. Bettati�

Cyclic Executive�
Input: "Stored schedule: L(k) for k = 0,1,…,F-1; �

" "Aperiodic job queue.�

TASK CYCLIC_EXECUTIVE:
 t = 0; /* current time */ k = 0; /* current frame */
 CurrentBlock := empty;
 BEGIN LOOP
 IF <any slice in CurrentBlock is not completed> take action;
 CurrentBlock := L(k);
 k := k+1 mod F; t := t+1;
 set timer to expire at time tF;
 IF <any slice in CurrentBlock is not released> take action;
 wake up periodic task server to handle slices in CurrentBlock;
 sleep until periodic task server completes or timer expires;
 IF <timer expired> CONTINUE;
 WHILE <the aperiodic job queue is not empty>
 wake up the first job in the queue;
 sleep until the aperiodic job completes;
 remove the just completed job from the queue;
 END WHILE;
 sleep until next clock interrupt;
 END LOOP;
END CYCLIC_EXECUTIVE;

© R. Bettati�

What About Aperiodic Jobs?�

•  Typically: "�
–  Scheduled in the background.�
–  Their execution may be delayed.�

•  But: �
–  Aperiodic jobs are typically results of external events.�

•  Therefore: �
–  The sooner the completion time, the more responsive the system�
–  Minimizing response time of aperiodic jobs becomes a design issue.�

•  Approach: �
–  Execute aperiodic jobs ahead of periodic jobs whenever possible.�
–  This is called Slack Stealing.�

CPSC-663: Real-Time Systems Clock-Driven Scheduling

4

© R. Bettati�

Slack Stealing (Lehoczky et al., RTSS’87)�

xk" "Amount of time allocated to slices executed during frame Fk.�
sk" "Slack during frame Fk: sk := f - xk.�

•  The cyclic executive can execute aperiodic jobs for sk amount of
time without causing jobs to miss deadlines.�

•  Example: �

4 8 12 16 20 0 1.5 0.5 2.0

4 9.5 10.5

© R. Bettati�

Sporadic Jobs �

•  Reminder: "Sporadic jobs have hard deadlines; the release time and
""the execution time are not known a priori.�
""Worst-case execution time known when job is released.�

•  Need acceptance test: �
J(d,e)

Fc-1 Fc Fc+1 Fl Fl+1

sc sc+1 sl d

∑
=

=
l

ci
islcS),(: Total amount of slack in Frames Fc, …, Fl.

•  Acceptance Test: "IF S(c,l) < e THEN
 reject job;
 ELSE
 accept job;
 schedule execution;
 END;

how?!

CPSC-663: Real-Time Systems Clock-Driven Scheduling

5

© R. Bettati�

Scheduling of Accepted Jobs�

•  Static scheduling: �
–  Schedule as large a slice of the accepted job as possible in the

current frame.�
–  Schedule remaining portions as late as possible.�

•  Mechanism: �
–  Append slices of accepted job to list of periodic-task slices in

frames where they are scheduled.�

•  Problem: Early commit.�

•  Alternatives: �
–  Rescheduling upon arrival.�
–  Priority-driven scheduling of sporadic jobs.�

© R. Bettati�

EDF-Scheduling of Accepted Jobs�

...

T1

T2

T3

TN

priority �
queue�

aperiodic

processor
reject �

acceptance�
test �

periodic
tasks

CPSC-663: Real-Time Systems Clock-Driven Scheduling

6

© R. Bettati�

Acceptance Test for EDF-Scheduled Sporadic Jobs�

•  Sporadic Job J with deadline d arrives: �
•  Test 1: "Test whether current amount of slack before d is

" "enough to accommodate J. (*)�
" "If not, reject! �

•  Test 2: "Test whether sporadic jobs still in system with
" "deadlines after d will miss deadline if J �
" "is accepted. (**)�
" "If yes, reject! �

•  Accept! �

•  (*) "Define S(Ji) : "Amount of slack up to time di after Ji has
" " "been scheduled.�

•  (**) "Update all S(Ji) with di > d , that is, �

© R. Bettati�

Accept. Test for EDF Spor. Jobs (Implementation)�

•  Define�
Si,k : slack in Frames Fi, ..., Fk �

•  Precompute all Si,k in first major cycle�
•  Initial amounts of slack in later cycles can be computed as�

Si+jF,k+j’F = Si,F + S1,k + (j’-j)S1,F�

•  Compute current slack of job with release time in Fc-1 and deadline
in Fl+1: �
" "Snew

c,l = Sc,l – Σ(dk<d)ek(c)�

•  Implementation: �
–  Initially compute Sc,l for newly arriving job. If negative, reject.�
–  Whenever job with earlier deadline arrives, decrease this value.

If negative, reject new job.�

CPSC-663: Real-Time Systems Clock-Driven Scheduling

7

© R. Bettati�

Static Scheduling of Jobs in Frames�
•  Layout of task schedule for cyclic executive can be formulated as a

schedule for jobs in a hyperperiod.�
•  This can be formulated as a network flow problem.�

F1

F2

Fj

Fm-1

Fm

Sink

J1

J2

Ji

Jn-1

Jn

Source

...

...

...

...

ei f

© R. Bettati�

Pros and Cons of Clock-Driven Scheduling �

•  Pros: �
–  Conceptual simplicity�
–  Timing constraints can be checked and enforced at frame

boundaries.�
–  Preemption cost can be kept small by having appropriate frame

sizes.�
–  Easy to validate: Execution times of slices known a priori.�

•  Cons:�
–  Difficult to maintain.�
–  Does not allow to integrate hard and soft deadlines.�

CPSC-663: Real-Time Systems Clock-Driven Scheduling

8

© R. Bettati�

Putting the Cyclic Executive into Practice�

T. P. Baker, Alan Shaw, “The Cyclic Executive Model and Ada”�

•  Implementation approaches for a Cyclic Executive: Solutions and
Difficulties�

–  Naive solution using the DELAY statement �

–  Using an interrupt from a hardware clock �

–  Dealing with lost or buffered interrupts�

–  Handling frame overruns�

© R. Bettati�

Naive Solution Using the DELAY Statement �

Source: T. P. Baker, Alan Shaw, “The Cyclic Executive Model and Ada”�

CPSC-663: Real-Time Systems Clock-Driven Scheduling

9

© R. Bettati�

Using an Interrupt from a Hardware Clock �

Source: T. P. Baker, Alan Shaw, “The Cyclic Executive Model and Ada”�

© R. Bettati�

Dealing with Lost or Buffered Interrupts�

Source: T. P. Baker, Alan Shaw, “The Cyclic Executive Model and Ada”�

CPSC-663: Real-Time Systems Clock-Driven Scheduling

10

© R. Bettati�

Handling Frame Overruns (I)�

ABORTION:

Source: T. P. Baker, Alan Shaw, “The Cyclic Executive Model and Ada”�

© R. Bettati�

Handling Frame Overruns (II)�

EXCEPTIONS:

Source: T. P. Baker, Alan Shaw, “The Cyclic Executive Model and Ada”�

