Priority-Driven Scheduling of Periodic Tasks

- **Priority-driven vs. clock-driven** scheduling:
 - *clock-driven*:
 - cyclic schedule
 - a priori
 - *priority-driven*:
 - priority queue

- **Assumptions for now:**
 - tasks are periodic
 - jobs are ready as soon as they are released
 - preemption is allowed
 - tasks are independent
 - no aperiodic or sporadic tasks

- **We will later:**
 - integrate *aperiodic* and *sporadic* tasks
 - integrate *resources*
 - *etc.*

Why Focus on Uniprocessor Scheduling?

- **Dynamic Multiprocessor Scheduling:**
 - tasks
 - priority queue
 - processors

- **Static Multiprocessor Scheduling:**
 - tasks
 - task assignment

- Poor worst-case performance of priority-driven algorithms in dynamic environments.
- Difficulty in validating timing constraints.
Static-Priority vs. Dynamic Priority

- **Static-Priority:** All jobs in task have same priority.
- **Example:** Rate-Monotonic:

 "The shorter the period, the higher the priority."

 $$T_1 = (5, 3, 5) \quad T_2 = (3, 1, 3)$$

- **Dynamic-Priority:** May assign different priorities to individual jobs.
- **Example:** Earliest-Deadline-First:

 "The nearer the absolute deadline, the higher the priority."

Example Algorithms

- **Static-Priority:**
 - Rate-Monotonic (RM): "The shorter the period, the higher the priority." [Liu+Layland ‘73]
 - Deadline-Monotonic (DM): "The shorter the relative deadline, the higher the priority." [Leung+Whitehead ‘82]

- For arbitrary relative deadlines, DM outperforms RM.

- **Dynamic-Priority:**
 - EDF: Earliest-Deadline-First.
 - LST: Least-Slack-Time-First.
 - FIFO/LIFO
 - etc.
Considerations about Priority Scheduling

Question: What makes for a good scheduling algorithm?

Def: **[Schedulable Utilization]**
Every set of periodic tasks with total utilization less or equal than the schedulable utilization of an algorithm can be feasibly scheduled by that algorithm.

Two observations:
1. The higher the schedulable utilization, the better the algorithm.
2. Schedulable utilization is always less or equal 1.0!

Schedulable Utilization of FIFO

Theorem: \(U_{FIFO} = 0 \)

Proof:
Given any utilization level \(\varepsilon > 0 \), we can find a task set, with utilization \(\varepsilon \), that may not be feasibly scheduled according to FIFO.

Example task set:

\[
\begin{align*}
T_1 &: \quad e_1 = \frac{5}{4} p_1 \\
T_2 &: \quad p_2 = \frac{2}{3} p_1 \\
& \quad e_2 = p_1
\end{align*}
\]

\(\Rightarrow U = \varepsilon \)
Theorem: EDF can feasibly schedule a system of independent preemptable tasks with relative deadlines equal to their periods \(\text{iff} \) their total utilization is less or equal 1.

- **Proof:**
 - *only-if:* obvious
 - *if:* show that if EDF fails to find feasible schedule, then the total utilization must exceed 1.

- **Assumptions:**
 - At some time \(t \), Job \(J_{i,c} \) of Task \(T_i \) misses its deadline.
 - \(\text{WLOG:} \) if more than one job have deadline \(t \), break tie for \(J_{i,c} \).

Optimality of EDF (cont)

- **Case 1:** Current period of every task begins at or after \(r_{i,c} \).
- **Case 2:** Current period of some task may start before \(r_{i,c} \).

Case 1

\[
\begin{align*}
T_1 & \quad \# & \quad \text{current period} \\
T_2 & \quad \# \\
\# & \quad r_{i,c} & \quad r_{i,c}+p_i \\
T_i & \quad \# \\
\# & \quad \# \\
\end{align*}
\]

- Current jobs other than \(J_{i,c} \) do not execute before time \(t \).

\[
\begin{align*}
t & < \frac{(t-\phi_1)\epsilon_1}{p_i} + \sum_{k \neq i} \left\lfloor \frac{t-\phi_k}{p_k} \right\rfloor \epsilon_k \\
& \leq t \cdot \frac{\epsilon_1}{p_i} + t \cdot \sum_{k \neq i} \frac{\epsilon_k}{p_k} \\
& = t \cdot U \\
\Rightarrow & \quad U > 1
\end{align*}
\]
Optimality of EDF (cont 2)

- **Case 2:**

 Some current periods start before \(r_{ic} \).

- **Notation:**

 \(T \) : Set of all tasks.

 \(T' \) : Set of tasks where current period starts before \(r_{ic} \).

 \(T-T' \) : Set of tasks where current period starts at or after \(r_{ic} \).

- \(t_l \) : Last point in time before \(t \) when some current job in \(T' \) is executed.

- No current job is executed immediately after time \(t_l \).

- **Why?**

 1. All jobs in \(T' \) are done.
 2. Jobs in \(T-T' \) not yet ready.

Case 2 (cont)

\[
\begin{align*}
t - t_l &< \frac{(t - t_l - \phi'_i)e_i}{p_i} + \sum_{k \neq i} \frac{t - t_i - \phi_k}{p_k} e_k \\
&\leq (t - t_l) \cdot \frac{e_i}{p_i} + (t - t_l) \cdot \sum_{k \neq i} \frac{e_k}{p_k} \\
&= (t - t_l) \cdot U \\
\Rightarrow &\quad U > 1
\end{align*}
\]

- **What about assumption that processor never idle?**

\(\text{Q.E.D.} \)
What about Static Priority?

- Static-Priority is not optimal!
- Example:
 \[
 T_1 = (2, 1, 2) \quad U = \frac{e_1}{p_1} + \frac{e_2}{p_2} = 1 \leq 100%
 \]

So: Why bother with static-priority?
- simplicity
- predictability

Unpredictability of EDF Scheduling

- Over-running jobs in EDF hold on to their priorities
- Example
 \[
 T_1 = (1, 2) \\
 T_2 = (1, 4) \\
 T_3 = (2, 8)
 \]

 Normal Operation

 \[
 T_1 = (1, 2) \\
 T_2 = (1, 4) \\
 T_3 = (2, 8)
 \]

 T3 over-runs by a bit more than one time unit
Unpredictability of EDF Scheduling (II)

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

T3 over-runs for a bit longer...

The same situation using Rate-Monotonic Scheduling: high-priority tasks are protected

Schedulability Bounds for Static-Priority

Definition: A set of tasks is *simply periodic* if, for every pair of tasks, one period is multiple of another period.

Theorem: A system of simply periodic, independent, preemptable tasks whose relative deadlines are equal to their periods is schedulable according to RM *iff* their total utilization does not exceed 100%.

Proof: Assume \(T_i \) misses deadline at time \(t \).
- \(t \) is integer multiple of \(p_i \).
- \(t \) is also integer multiple of \(p_k \), \(\forall p_k < p_i \).

\[\Rightarrow \text{total time to complete jobs with deadline } t : \]
\[\sum_{k=1}^{i} \frac{t \cdot e_k}{p_k} = t \cdot U_i = t \cdot \sum_{k=1}^{i} \frac{e_k}{p_k} \]

If job of \(T_i \) misses deadline, then \(U_i > 1 \Rightarrow U > 1 \).

Q.E.D.
Theorem: [Liu & Layland '73] A system of n independent, preemptable periodic tasks with $D_i = p_i$ can be feasibly scheduled by the RM algorithm if its total utilization U is less or equal to $U_{RM}(n) = n(2^{1/n} - 1)$.

Proof Outline: First, show that theorem is correct for special case where longest period $p_n < 2p_1$ (p_1 = shortest period). We will remove this restriction later.

Why not 1.0? Counterexample:

- $T_1 = (2, 1, 2)$
- $T_2 = (5, 2.5, 5)$

Proof of Liu & Layland

- **General idea:** Find the most-difficult-to-schedule system of n tasks among all difficult-to-schedule systems of n tasks.

- **Difficult-to-schedule**: Fully utilizes processor for some time interval. Any increase in execution time would make system unschedulable.

- **Most-difficult-to-schedule**: System with lowest utilization among difficult-to-schedule systems.

- Each of the following 4 steps brings us closer to this system.
Proof of Liu\&Layland (cont)

Step 1: Identify **phases** of tasks in most-difficult-to-schedule system.

System must be **in-phase**. (talk about this later)

Proof of Liu\&Layland (cont)

Step 2: Choose **relationship between periods and execution times**. Hypothesize that parameters of MDTS system are thus related.

- Confine attention to first period of each task.
- Tasks keep processor busy until end of period p_n.

$$
T_1 \quad p_1 \quad T_2 \quad p_2 \quad T_3 \quad p_3 \quad \ldots \quad T_{n-1} \quad p_{n-1} \quad T_n \quad p_n
$$

$$
e_k = p_{k+1} - p_k \quad e_n = p_n - 2 \sum_{k=1}^{n-1} e_k
$$

call this **Property A**

© R. Bettati
Proof Liu&Layland (cont)

Step 3: Show that any set of D-T-S tasks that are not related according to Property A has higher utilization.

- What happens if we deviate from Property A?

- Deviate one way: Increase execution of some high-priority task by ϵ:
 \[e_1' = e_1 + \epsilon = p_2 - p_1 + \epsilon \]

 Must reduce execution time of some other task:
 \[e_k' = e_k - \epsilon \]

 \[U' - U = \frac{e_1'}{p_1} + \frac{e_k'}{p_k} - \frac{e_1}{p_1} - \frac{e_k}{p_k} = \frac{\epsilon}{p_1} - \frac{\epsilon}{p_k} > 0 \]

Proof Liu&Layland (cont)

- Deviate the other way: Reduce execution time of some high-priority tasks by ϵ:
 \[e_1'' = e_1 - \epsilon = p_2 - p_1 - \epsilon \]

 Must increase execution time of some lower-priority task:
 \[e_k'' = e_k + 2\epsilon \]

 \[U'' - U = \frac{2\epsilon}{p_k} - \frac{\epsilon}{p_1} > 0 \]
Proof Liu&Layland (cont)

Step 4: Express the total utilization of the M-D-T-S task system (which has Property A).

- Define
 \[g_i := \frac{p_n - p_i}{p_i} \Rightarrow \begin{cases}
 e_i &= g_i p_i - g_i+1 p_{i+1} \\
 e_n &= p_n - 2g_1p_1
\end{cases} \]

 \[U = \sum_{i=1}^{n} \frac{e_i}{p_i} = \sum_{i=1}^{n-1} \left(g_i - g_{i+1} \frac{p_{i+1}}{p_i} \right) + 1 - 2g_1 \frac{p_1}{p_n} = 1 + g_1 \frac{g_1 - 1}{g_1 + 1} + \sum_{i=2}^{n-1} g_i \frac{g_i - g_i-1}{g_i + 1} \]

- Find least upper bound on utilization: Set first derivative of \(U \) with respect to each of \(g_i \)'s to zero:

 \[\frac{\partial U}{\partial g_i} = g_i^3 + 2g_i^2 - \frac{g_{i+1}}{(g_i + 1)^2} - \frac{g_{i+1}}{g_{i+1} + 1} = 0 \]

 \[g_j = 2^{(n-j)/n} - 1 \]

 \[\Rightarrow U = n \left(2^{1/n} - 1 \right) . \quad \text{Q.E.D.} \]

What about Period Ratios > 2 ?

- We show: 1. Every D-T-S task system \(T \) with period ratio > 2 can be transformed into D-T-S task system \(T' \) with period ratio \(\leq 2 \).

 2. The total utilization of the task set decreases during the transformation step.

- We can therefore confine search to systems with period ratio \(< 2 \).

Transformation \(T \rightarrow T' \): while \(\exists T_k \) with \(l \cdot p_k < p_n \leq (l+1)p_k \) \((l \geq 2) \)

 \[T_k(p_k, e_k) \rightarrow (l \cdot p_k, e_k) \]

 \[T_n(p_n, e_n) \rightarrow (p_n, e_n + (l-1)e_k) \]

end

- Compare utilizations:

 \[U - U' = \frac{e_k}{p_k} + \frac{e_n}{p_n} - \frac{e_k}{l \cdot p_k} - \frac{e_n + (l-1)e_k}{p_n} = \frac{e_k}{p_k} - \frac{e_k}{l \cdot p_k} - \frac{(l-1)e_k}{p_n} \]

 \[= \left(\frac{1}{l \cdot p_k} - \frac{1}{p_n} \right) (l-1)e_k > 0 \]

 \[\text{Q.E.D.} \]

© R. Bettati
That Little Question about the Phasing...

Definition: [Critical Instant]

[Liu&Layland] If the maximum response time of all jobs in T_i is less than D_i, then the job of T_i released in the critical instant has the maximum response time.

[Baker] If the response time of some jobs in T_i exceeds D_i, then the response time of the job released during the critical instant exceeds D_i.

Theorem: In a fixed-priority system where every job completes before the next job in the same task is released, a critical instant of a task T_i occurs when one of its jobs $J_{i,c}$ is released at the same time with a job of every higher-priority task.

Proof (informal)

- **Assume:** Theorem holds for $k < i$.
- **WLOG:** $\forall k < i : \phi_k = 0$, and we look at $J_{i,1}$:
- **Observation:** The completion time of higher-priority jobs is independent of the release time of $J_{i,1}$.
- **Therefore:** The sooner $J_{i,1}$ is released, the longer it has to wait until it is completed.

Q.E.D.
Proof 2 (less informal)

- **WLOG:** \(\min\{\phi_k \mid k = 1, ..., n\} = 0 \)
- **Observation:** Need only consider time processor is busy executing jobs in \(T_k \), \(T_{k+1} \), ..., \(\hat{T}_{i-1} \) before \(\phi_i \).
 If processor idle or executes lower-priority jobs, ignore that portion of schedule and redefine the \(\phi_k \)’s.
- Let \(R_{i,1} \) be the response time for \(J_{i,1} \).
- During \([\phi_i, \phi_i + R_{i,1}] \) a total of \([(R_{i,1} + \phi_i - \phi_k) / p_k] \) jobs of \(T_k \) become ready for execution.

- so (time-demand analysis):
 \[
 R_{i,1} + \phi_i = e_i + \sum_{k=1}^{i-1} \left[\frac{R_{i,1} + \phi_i - \phi_k}{p_k} \right] e_k
 \]
- and:
 \[
 R_{i,1} = e_i + \sum_{k=1}^{i-1} \left[\frac{R_{i,1} + \phi_i - \phi_k}{p_k} \right] e_k - \phi_i
 \]

Optimal Static-Priority Scheduling

Theorem: If a task set can be feasibly scheduled by some static-priority algorithm, it can be feasibly scheduled by DM.

Proof:
- Assume: A feasible schedule \(S \) exists for a task set \(T \). The priority assignment is \(T_1, T_2, ..., T_n \).
 For some \(k \), we have \(D_k > D_{k+1} \).
- We show that we can swap the priority of \(T_k \) and \(T_{k+1} \) and the resulting schedule - call it \(S(k) \) - remains feasible.
Optimality of DM: Proof (II)

- So, you want to swap the priority of T_k and T_{k+1}?!

- **Observation:** Response time for each task other than T_k and T_{k+1} is the same in S and $S(k)$.
- **Observation:** Response time of T_{k+1} in $S(k)$ must be smaller than in S, since T_{k+1} is not delayed by T_k in $S(k)$.

- Thus: Must prove that deadline of first invocation of T_k is also met in $S(k)$. (Critical Instant)
- Let x be the amount of work done in S for all tasks in T_1,\ldots,T_{k-1} during interval $[0,d_{k+1}]$.
- Note: Amount of work done in S and $S(k)$ for tasks in T_1,\ldots,T_{k-1} is at most x during any interval of length d_{k+1}.
- We must have

$$x + e_k + e_{k+1} \leq d_{k+1}$$

Optimality of DM: Proof(III)

- **Observation:** Number of invocations of T_{k+1} in Schedule $S(k)$ during interval $[0,d_k/d_{k+1} \times d_{k+1}]$ is at most $[d_k/d_{k+1}]$.

- **Observation:** Amount of work for all tasks in T_1,\ldots,T_{k-1} in the interval $[0,d_k/d_{k+1} \times d_{k+1}]$ is at most $[d_k/d_{k+1}] \times x$.

- The following condition is sufficient to guarantee that the deadline of the first request of T_k is met in $S(k)$:

$$[d_k/d_{k+1}] \times (x+e_{k+1}) + e_k \leq [d_k/d_{k+1}] \times d_{k+1}$$

- This, however, follows from inequality on previous page. (qed)
Why Utilization-Based Tests?

- If no parameter ever varies, we could use simulation.
- But:
 - Execution times may be smaller than e_i
 - Inter-release times may vary.
- Tests are still robust.
- Useful as methodology to define execution times or periods.

Time-Demand Analysis

- Compute total demand on processor time of job released at a critical instant and by higher-priority tasks as function of time from the critical instant.
- Check whether demand can be met before deadline.
- Determine whether T_i is schedulable:
 - Focus on a job in T_i, suppose release time is critical instant of T_i:
 $w(t)$: Processor-time demand of this job and all higher-priority jobs released in (t_0, t):
 $$w_i(t) = c_i + \sum_{k=1}^{i-1} \left\lfloor \frac{t}{p_k} \right\rfloor c_k$$
 - This job in T_i meets its deadline if, for some
 $$t_i \leq D_i \leq p_i \quad : \quad w_i(t) \leq t_i$$
 - If this does not hold, job cannot meet its deadline, and system of tasks is not schedulable by given static-priority algorithm.
Example

\[T_1 = (3, 1) \]
\[T_2 = (5, 1.5) \]
\[T_3 = (7, 1.25) \]
\[T_4 = (8, 0.5) \]

\[w_1(t) = \left[\frac{t}{p_1} \right] e_1 \]

Example

\[T_1 = (3, 1) \]
\[T_2 = (5, 1.5) \]
\[T_3 = (7, 1.25) \]
\[T_4 = (8, 0.5) \]

\[w_1(t) = \left[\frac{t}{p_1} \right] e_1 \]
\[w_2(t) = \left[\frac{t}{p_1} \right] e_1 + \left[\frac{t}{p_2} \right] e_2 \]
Example

\[T_1 = (3, 1) \]
\[T_2 = (5, 1.5) \]
\[T_3 = (7, 1.25) \]
\[T_4 = (8, 0.5) \]
Practical Factors

- Non-Preemptable Portions (*)
- Self-Suspension of Jobs (*)
- Context Switches (*)
- Insufficient Priority Resolutions (Limited Number of Distinct Priorities)
- Time-Driven Implementation of Scheduler (Tick Scheduling)
- Varying Priorities in Fixed-Priority Systems

Practical Factors I: Non-Preemptability

- Jobs, or portions thereof, may be non-preemptable.

Definition: [non-preemptable portion] Let’s denote by ρ_I the largest non-preemptable portion of jobs in T_i.

Definition: A job is said to be blocked if it is prevented from executing by lower-priority job. (priority-inversion)

- When testing schedulability of a task T_r, we must consider
 - higher-priority tasks
 and
 - non-preemptable portions of lower-priority tasks
Analysis with Non-Preemptable Portions

Definition: The blocking time b_i of Task T_i is the longest time by which any job of T_i can be blocked by lower-priority jobs:

$$b_i = \max_{i+1 \leq k \leq n} \rho_k$$

- Time-demand function with blocking:
 $$w_i(t) = e_i + b_i + \sum_{k=1}^{i-1} \left\lfloor \frac{t}{p_k} \right\rfloor e_k$$

- Utilization bounds with blocking:
 test one task at a time:

$$\frac{e_1}{p_1} + \frac{e_2}{p_2} + \ldots + \frac{e_i + b_i}{p_i} = \sum_{k=1}^{i} \frac{e_k}{p_k} + \frac{b_i}{p_i} \leq U_{RM}(i)$$

Non-Preemptability: Example

$$T_1 = (4, 1)$$
$$T_2 = (5, 1.5)$$
$$T_3 = (9, 2)$$

![Time-demand function](image)
Definition: Self-suspension of a job occurs when the job waits for an external operation to complete (RPC, I/O operation).

- **Assumption:** We know the maximum length of external operation; i.e., the duration of self-suspension is bounded.

- **Example:**
 - $T_1 = (\phi_1=0, p_1=4, e_1=2.5)$
 - $T_2 = (\phi_2=3, p_2=7, e_2=2.0)$

- **Analysis:**
 - b_{SS}^i: Blocking time of T_i due to self-suspension.
 - b_{NP}^i: Blocking time due to non-preemptable portions
 - K_i: Max. number of self-suspensions
 - b_i: Total blocking time

\[
b_i = b_{SS}^i + (K_i + 1) b_{NP}^i
\]
Practical Factors III: Context Switches

Definition: [Job-level fixed priority assignment]
In a job-level fixed priority assignment, each job is given a fixed priority for its entire execution.

- **Case I:** No self-suspension
 - In a job-level fixed-priority system, each job preempts at most one other job.
 - Each job therefore causes at most **two** context switches.
 - Therefore: Add the context switch time twice to the execution time of job: \(e_i = e_i + 2\, CS \)

- **Case II:** Self-suspensions can occur
 - Each job suffers **two more** context switches each time it self-suspends.
 - Therefore: Add more context switch times appropriately: \(e_i = e_i + 2\,(K_i + 1)\, CS \)