Introduction to Cache Analysis for Real-Time Systems

- Ignoring cache leads to significant resource under-utilization.
- Q: How to appropriately account for cache?

Worst-Case Execution Time (WCET)

- WCET analysis must be safe
- WCET analysis must be tight
- WCET depends on:
 - execution path (in program)
 - cache behavior (depends on execution history)
 - pipelining (depends on very recent execution history)
Problems with Cache Memories

Two fundamental problems with cache analysis:

1. **Large differences in cache behavior** (and execution time!) result from minor changes
 - in program code
 - in input data

2. Inter-task cache interference

WCET analysis for **single tasks** remains prerequisite for multi-task analysis!

Cache Memories

Major parameters of caches:

1. **Capacity**: how many bytes in the cache?

2. **Line size** (block size): number of contiguous bytes that are transferred from memory on cache miss.
 - Cache contains \(n = \text{capacity} / \text{line_size} \) blocks

3. **Associativity**: In how many cache locations can a particular block reside?
 - \(A = 1 \) \(\Rightarrow \) “direct mapped”
 - \(A = n \) \(\Rightarrow \) “fully associative”
Cache Semantics

- A-way associative cache can be considered as a sequence of \(n/A \) fully associative sets
 \[F = <f_1^n, \ldots, f_{n/A}> \]
- Each set \(f_i \) is a sequence of lines
 \[L = <l_1^n, \ldots, l_{A}> \]
- The store is a set of memory blocks
 \[M = \{m_1, \ldots, m_s\} \]
- The function \(\text{adr} : M \rightarrow \text{integers} \) gives address of each block.
- The function \(\text{set} : M \rightarrow F \) denotes where block gets stored:
 \[\text{set}(m) = f_i, \text{where } i = \text{adr}(m) \mod (n/A) + 1 \]
- No memory in a set line: \(M' = M \cup \{I\} \)

Cache Semantics (II)

Cache semantics separates two aspects:
1. **Set**, where memory block is stored. Can be statically determined, as it depends only on address of the memory block. Dynamic allocation of memory blocks to sets is modeled by the cache states.
2. **Replacement strategy** within one set of the cache: History of memory references if relevant here. Modeled by set states.

- **Def**: set state is a function \(s : L \rightarrow M' \), “what memory block in in given line?”
 - Note: In fully associative cache a memory block occurs only once.
- **Def**: Set \(S \) of all set states.

- **Def**: cache state is a function \(c : F \rightarrow S \), “what ‘lines’ does set contain?”
LRU Replacement Policy

- The side effects of referencing memory on the set/cache is represented by an update function. We note that
 - behavior of sets is independent of each other
 - order of blocks within a set indicates relative age of block.

- We number cache lines according to relative age of their memory block: \(s(l_j) = m, m \neq I \) describes the relative age of block \(m \) according to LRU, not its physical position in the set.

- Def: set update function \(U_S : S \times M \rightarrow S \) describes new set state for given set state and referenced memory block.

- Def: cache update function \(U_C : C \times M \rightarrow C \) describes new cache state for a given cache state and a referenced memory block.

LRU Replacement Policy (II)

Definition 5 (set update). A set update function \(U_S : S \times M \rightarrow S \) describes the new set state for a given set state and a referenced memory block.

Definition 6 (cache update). A cache update function \(U_C : C \times M \rightarrow C \) describes the new cache state for a given cache state and a referenced memory block.

The most recently referenced memory block is put in the first position \(l_1 \) of the set. If the referenced memory block \(m \) is in the set already, then all memory blocks in the set that have been more recently used than \(m \) are shifted by one position to the next set line, i.e., they increase their relative age by one. If the memory block \(m \) is not yet in the set, then all memory blocks in the set are shifted and, if the set is full, the 'oldest', i.e., least recently used memory block is removed from the set.
Control Flow Representation

- Program represented as Control Flow Graph (CFG):
 - Nodes are Basic Blocks.
 - Basic block is “a sequence of instructions in which control flow enters at the beginning and leaves at the end without halt or possibility of branching except at the end.”
 - For each basic block the sequence of memory references is known.
- We can map control flow nodes to sequences of memory blocks (at least for instruction caches) and represent this as function $L: V \rightarrow M^*$
- We can extend U_c to sequences of memory references:
 $$U_c(c, <m_1, ..., m_y>) = U_c(... U_c(c, m_1), ..., m_y)$$
- Extend UC to path $<k_1, ..., k_p>$ in control flow graph:
 $$U_c(c, <k_1, ..., k_p>) = U_c(c, L(k_1), ..., L(k_p))$$

Must Analysis vs. May Analysis

- Must Analysis determines set of memory blocks definitely in the cache whenever control reaches a given program point.
- May Analysis determines all memory blocks that may be in the cache at a given program point.
- May analysis is used to guarantee absence of a memory block in the cache.
- Analysis for basic blocks and paths of basic blocks is simple.
- What about when paths merge?!
Abstract Cache States

Def: abstract set state is a function \(s^*: L \rightarrow 2^M \), maps set lines to sets of memory blocks.

Def: Set \(S^* \) of all abstract set states.

“An abstract set state \(s^* \) describes a set of concrete set states \(s \).”

Def: abstract cache state is a function \(c^*: F \rightarrow S^* \), maps sets to abstract set states.

Def: Set \(C^* \) of all abstract cache states.

“An abstract cache state \(c^* \) describes a set of concrete cache states \(c \).”

MUST Analysis

- \(ma \in s^*(l_x) \) for some \(x \) means that the memory block \(ma \) is in the cache.

- Observation 1: The position (relative age) of a memory block \(ma \) in a set can only be changed by memory references that go into the same set.
 - i.e. by references to memory blocks \(mb \) with \(set(ma) = set(mb) \).

- Observation 2: The position is not changed by references to memory blocks \(mb \in s^*(l_y) \) where \(y < x \), i.e., memory blocks that are already in the cache and are “younger” or the same age as \(ma \).

- Observation 3: \(ma \) will stay in the cache at least for the next \(A-x \) references that go to the same set and are not yet in the cache or are older than \(ma \).
MUST Analysis: Update Function

\[
\mathcal{U}_S^c(\hat{s}, m) = \begin{cases}
 \{l_i \mapsto \{m\}, \\
 l_i \mapsto \hat{s}(l_{i-1}) | i = 2 \ldots h - 1, \\
 l_b \mapsto \hat{s}(l_{i-1}) \cup (\hat{s}(l_b) - \{m\}), \\
 l_j \mapsto \hat{s}(l_j) | i = h + 1 \ldots A\}; & \text{if } \exists l_i: m \in \hat{s}(l_i) \\
 \{l_i \mapsto \{m\}, \\
 l_i \mapsto \hat{s}(l_{i-1}) | i = 2 \ldots A\}; & \text{otherwise}
\end{cases}
\]

\[
\mathcal{J}_S^c(\hat{s}_1, \hat{s}_2) = \hat{s}, \text{ where:}
\]

\[
\hat{s}(l_i) = \{m \mid \exists l_a, l_b \text{ with } m \in \hat{s}_1(l_a), m \in \hat{s}_2(l_b) \text{ and } x = \max(a, b)\}
\]

MUST Analysis and Control Flow

- Recall: control flow node \(k \) issues sequence of memory blocks
 \[L(k) =
 \langle m_\nu \ldots, m_\rho \rangle \]

- Simple case: node \(k \) has only one direct predecessor, say \(k' \).
- Then there is an equation:
 \[c^k = U_c^c(c^{k'} \langle m_\nu \ldots, m_\rho \rangle) = U_c^c(\ldots U_c^c(c_k; m_\rho) \ldots, m_\nu) \]
- Solve equation by fixpoint iteration.
- Abstract cache state \(c^k \) describes all possible cache states when control reaches node \(k \).

- Let \(s^c = c^k(set(m)) \) for some memory block \(m \).
- If \(m \in s^c(l_\nu) \) for some set line \(l_\nu \), then \(m \) is definitely in the cache every time control reaches \(k \).
- Therefore, reference to \(m \) is classified as ALWAYS HIT.
Multiple Predecessors: Join Function

Definition 9 (join function). A join function \(\hat{J} : \hat{C} \times \hat{C} \rightarrow \hat{C} \) combines two abstract cache states.

Figure 5. Join for the Must analysis.

\[\hat{J}^J(\hat{s}_1, \hat{s}_2) = \hat{s}, \text{ where:} \]
\[\hat{s}(i) = \{m | \exists l_a, l_b \text{ with } m \in \hat{s}_1(l_a), m \in \hat{s}_2(l_b) \text{ and } x = \max(a, b)\} \]

MUST Analysis with multiple Predecessors

- Simple case: node \(k \) has more than one predecessor, say \(k_1 \) to \(k_{k'} \).
- Then there is an equation:
 \[c^*_{k} = U^*_{\hat{C}}(c^*_{k_1}, \ldots, m_r) = U^*_{\hat{C}}(\ldots U^*_{\hat{C}}(c^*_{k_{k'}}, m_r) \ldots, m_r) \]
 where
 \[c^*_{k'} = J^C(c^*_{k_{k'}}, \ldots, J^C(c^*_{k_{k'}}, c^*_{k_{k'}})) \ldots) \]

- Rest of classification of memory reference stays the same.
MAY Analysis

Q: How do we know if a memory reference is an ALWAYS MISS?

A: We determine the set of memory blocks that MAY be in the cache.

MAY Analysis

- \(ma \in s'(l_x) \) for some \(x \) means that the memory block \(ma \) may be in the cache.

- **Observation 1:** The position (relative age) of a memory block \(ma \) in a set can only be changed by memory references that go into the same set.
 - i.e. by references to memory blocks \(mb \) with \(\text{set}(ma) = \text{set}(mb) \).

- **Observation 2:** The position is not changed by references to memory blocks \(mb \in s'(l_y) \) where \(y \leq x \), i.e., memory blocks that are already in the cache and are “younger” or the same age as \(ma \).

- **Observation 3:** \(ma \) will stay in the cache at least for the next \(A - x + 1 \) references that go to the same set and are not yet in the cache or are older than or have the same age as \(ma \).
blocks that are in Figure 6. The abstract cache update function for the may analysis has the same structure as the one for the must analysis:

\[
\hat{U}_C^s(s, m) = \begin{cases}
[li \mapsto \{m\}, & i = 2 \ldots h, \\
\hat{s}(l_{i-1}) & i = h + 2 \ldots A \text{ if } \exists h: m \in \hat{s}(l_h) \\
[li \mapsto \{m\}, & \text{otherwise}
\end{cases}
\]

The join function for the may analysis is given by:

\[
\hat{J}_S^c(\hat{s}_1, \hat{s}_2) = \hat{s}_1 \cup \hat{s}_2, \text{ where:}
\]

\[
\hat{s}(l_h) = \{m \mid \exists l_h, m \in \hat{s}_1(l_h), m \in \hat{s}_2(l_h) \text{ and } x = \min(a, b) \}
\cup \{m \mid m \in \hat{s}_1(l_h) \text{ and } \exists l_h, m \in \hat{s}_2(l_h) \}
\cup \{m \mid m \in \mu \}
\]

Figure 6. Update of an abstract fully associative set for the May analysis.

Figure 7. Join for the May analysis.
MAY Analysis and Control Flow

- Let $s^* = c^*_k(set(m))$ for some memory block m.

- If m is not in $s^*(l_j)$ for at least one line l_j, then m is definitely NOT in the cache whenever control reaches k.

- Therefore, reference to m is classified as ALWAYS MISS.