Priority-Driven Scheduling of Periodic/Sporadic Tasks

- **Priority-driven vs. clock-driven** scheduling:
 - Clock-driven: cyclic schedule
 - Tasks: a priori
 - Executive: processor
 - Priority-driven: priority queue
 - Tasks: processor

- Assumptions for now:
 - Tasks are periodic/sporadic
 - Jobs are ready as soon as they are released
 - Preemption is allowed
 - Tasks are independent
 - No aperiodic or (strictly) sporadic tasks

- We will later:
 - Integrate aperiodic and (strictly) sporadic tasks
 - Integrate resources
 - Etc.

Why Focus on Uniprocessor Scheduling?

- Poor worst-case performance of priority-driven algorithms in dynamic environments.
- Resource access is very complicated to analyze.
- We will re-visit multiprocessor scheduling later.
Static-Priority vs. Dynamic Priority

Static-Priority: All jobs in task have same priority.

Example: Rate-Monotonic:
“The shorter the period, the higher the priority.”

\[
\begin{align*}
T_1 &= (5, 3, 5) \\
T_2 &= (3, 1, 3)
\end{align*}
\]

Dynamic-Priority: May assign different priorities to individual jobs.

Example: Earliest-Deadline-First:
“The nearer the absolute deadline, the higher the priority.”

Example Algorithms

Static-Priority:
- Rate-Monotonic (RM): “The shorter the period, the higher the priority.” [Liu+Layland '73]
- Deadline-Monotonic (DM): “The shorter the relative deadline, the higher the priority.” [Leung+Whitehead '82]

“Trivia”: For arbitrary relative deadlines, DM outperforms RM.

Dynamic-Priority:
- EDF: Earliest-Deadline-First.
- LST: Least-Slack-Time-First.
- FIFO/LIFO
- etc.
Considerations about Priority Scheduling

Question: What makes for a good scheduling algorithm?

Ok, a good scheduler meets deadlines...

... but what does this mean?!

Def: \[\textbf{Schedulable Utilization} \]

Every set of periodic tasks with total utilization less or equal than the schedulable utilization of an algorithm can be feasibly scheduled by that algorithm.

Two observations:
1. The higher the schedulable utilization, the better the algorithm.
2. The schedulable utilization cannot exceed 1.0!

Example: Schedulable Utilization of FIFO

Theorem: \[U_{FIFO} = 0 \]

Proof:

Given any utilization level \(\epsilon > 0 \), we can find a task set, with utilization \(\epsilon \), that may not be feasibly scheduled according to FIFO.

Example task set:

\[
\begin{align*}
T_1 & : e_1 = \frac{2}{7} p_1 \\
T_2 & : p_2 = \frac{2}{7} p_1 \\
e_2 & = p_1 \\
\Rightarrow U = \epsilon
\end{align*}
\]

© R. Bettati
Theorem: EDF can feasibly schedule a system of independent preemptable tasks with relative deadlines equal to their periods iff their total utilization is less or equal 1.

Proof: only-if: obvious
if: show that if EDF fails to find a feasible schedule, then the total utilization must exceed 1.

Assumptions:
- At some time t, Job $J_{i,c}$ of Task T_i misses its deadline.
- WLOG: if more than one job have deadline t, break tie for $J_{i,c}$.

Optimality of EDF (cont)

Case 1: Current period of every task begins at or after $r_{i,c}$.
Case 2: Current period of some task may start before $r_{i,c}$.

Case 1:

T_j

T_i

T_i

$J_{i,c}$ misses deadline!

Current jobs other than $J_{i,c}$ do not execute before time t.

\[
t < \frac{(t-\phi_i)e_k}{p_i} + \sum_{k \neq i} \left\lfloor \frac{t-\phi_k}{p_k} \right\rfloor e_k
\leq t \cdot \frac{e_i}{p_i} + t \cdot \sum_{k \neq i} \frac{e_k}{p_k}
= t \cdot U
\Rightarrow U > 1\]
Optimality of EDF (Case 2)

- **Case 2:**
 - Some current periods start before $r_{i,c}$.

- **Notation:**
 - T: Set of all tasks.
 - T': Set of tasks where current period starts before $r_{i,c}$.
 - $T-T'$: Set of tasks where current period start at or after $r_{i,c}$.

- t_l: Last point in time before t when some current job in T' is executed.
- No current job is executed immediately after time t_l.
- Why?
 1. All jobs in T' are done.

Optimality of EDF (Case 2, cont)

\[
t - t_l < \frac{(t-t_l-\phi'_i)e_{i}}{p_i} + \sum_{k \neq i} \frac{t-t_l-\phi'_k}{p_k} c_k \\
\leq (t-t_l) \cdot \frac{e_{i}}{p_i} + (t-t_l) \cdot \sum_{k \neq i} \frac{c_k}{p_k} \\
= (t-t_l) \cdot U \\
\Rightarrow \quad U > 1
\]
Optimality of EDF (idle time?!)

Q: What about assumption that processor never idle?

Q.E.D.

What about Static Priority?

- Static-Priority is not optimal!
- Example:

\[U = \frac{e_1}{p_1} + \frac{e_2}{p_2} = 1 \leq 100\% \]

- So: Why bother with static-priority?
 - simplicity
 - predictability
Unpredictability of EDF Scheduling

- Over-running jobs in EDF hold on to their priorities
- Example

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

Normal Operation

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

T3 over-runs by a bit more than one time unit

Unpredictability of EDF Scheduling (II)

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

T3 over-runs for a bit longer...

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

The same situation using Rate-Monotonic Scheduling:
high-priority tasks are protected
Schedulability Bounds for Static-Priority

Definition: A set of tasks is **simply periodic** if, for every pair of tasks, one period is multiple of another period.

Theorem: A system of simply periodic, independent, preemptable tasks whose relative deadlines are equal to their periods is schedulable according to RM **iff** their total utilization does not exceed 100%.

Proof: Assume T_i misses deadline at time t.
- t is integer multiple of p_i,
- t is also integer multiple of p_k, $\forall p_k < p_i$.

\Rightarrow total time to complete jobs with deadline t:

$$\sum_{k=1}^{i} \frac{t \cdot e_k}{p_k} = t \cdot U_i = t \cdot \sum_{k=1}^{i} \frac{e_k}{p_k}$$

If job of T_i misses deadline, then $U_i > 1 \Rightarrow U > 1$.

Schedulable Utilization of Tasks with $D_i=p_i$

with Rate-Monotonic Algorithm

Theorem: [Liu&Layland ’73] A system of n independent, preemptable periodic tasks with $D_i=p_i$ can be feasibly scheduled by the RM algorithm if its total utilization U is less or equal to $U_{RM}(n) = n(2^{1/n}-1)$.

Why not 1.0? Counterexample:

- $T_1 = (2, 1, 2)$
- $T_2 = (5, 2.5, 5)$

Proof Outline: First, show that theorem is correct for special case where longest period $p_i < 2p_1$ ($p_1 =$ shortest period). We will remove this restriction later.
Proof of Liu&Layland

- General idea: Find the most-difficult-to-schedule system of \(n \) tasks among all difficult-to-schedule systems of \(n \) tasks.

- Difficult-to-schedule: Fully utilizes processor for some time interval. Any increase in execution time would make system unschedulable.

- Most-difficult-to-schedule: System with lowest utilization among difficult-to-schedule systems.

- Each of the following 4 steps brings us closer to this system.

Proof of Liu&Layland (cont)

Step 1: Identify phases of tasks in most-difficult-to-schedule system.

System must be in-phase. (talk about this later)
Proof of Liu&Layland (cont)

Step 2: Choose relationship between periods and execution times. Hypothesize that parameters of MDTS system are thus related.

- Confine attention to first period of each task.
- Tasks keep processor busy until end of period \(p_{n} \).

\[
\begin{align*}
T_1 & \quad p_1 \\
T_2 & \quad p_1 \\
T_3 & \quad p_2 \\
T_{n-1} & \quad p_{n-1} \\
T_n & \quad p_n
\end{align*}
\]

\[
e_k = p_{k+1} - p_k \\
e_n = p_n - 2 \sum_{k=1}^{n-1} e_k
\]

call this Property A

Proof Liu&Layland (cont)

Step 3: Show that any set of D-T-S tasks that are not related according to Property A has higher utilization.

Q: What happens if we deviate from Property A?

Deviate one way: Increase execution of some high-priority task by \(\varepsilon \):

\[
e'_1 = e_1 + \varepsilon = p_2 - p_1 + \varepsilon
\]

Must reduce execution time of some other task:

\[
e'_k = e_k - \varepsilon
\]

\[
U' - U = \frac{e'_1}{p_1} + \frac{e'_k}{p_k} - \frac{e_1}{p_1} - \frac{e_k}{p_k} = \frac{\varepsilon}{p_1} - \frac{\varepsilon}{p_k} > 0
\]
Proof Liu&Layland (cont)

Q: What happens if we deviate from Property A?

Deviate the other way:

Reduce execution time of some high-priority tasks by ε:

$$e''_1 = e_1 - \varepsilon = p_2 - p_1 - \varepsilon$$

Must increase execution time of some lower-priority task:

$$e''_{ik} = e_k + 2\varepsilon$$

$$U'' - U = \frac{2\varepsilon}{p_k} - \frac{\varepsilon}{p_1} > 0$$

Proof Liu&Layland (cont)

Step 4: Express the total utilization of the M-D-T-S task system (which has Property A).

- Define

$$g_i := \frac{p_n - p_i}{p_i} \Rightarrow \begin{cases} e_i = g_i p_i - g_{i+1} p_{i+1} \\ e_n = p_n - 2g_1 p_1 \end{cases}$$

$$U = \sum_{i=1}^{n} e_i = \sum_{i=1}^{n-1} \left(g_i - g_{i+1} \frac{p_{i+1}}{p_i} \right) + 1 - 2g_1 \frac{p_1}{p_n} = 1 + g_1 \frac{g_1 - 1}{g_1 + 1} + \sum_{i=2}^{n-1} g_i \frac{g_i - g_{i-1}}{g_i + 1}$$

- Find least upper bound on utilization: Set first derivative of U with respect to each of g_i’s to zero:

$$\frac{\partial U}{\partial g_i} = \frac{g_j^2 + 2g_j - g_{j-1}}{(g_j + 1)^2} - \frac{g_{j+1}}{g_j + 1} = 0$$

$$g_j = 2^{(n-j)/n} - 1$$

$$\Rightarrow U = n \left(2^{1/n} - 1\right) .$$

Q.E.D.
What about Period Ratios > 2 ?

• We show: 1. Every D-T-S task system T with period ratio > 2
can be transformed into D-T-S task system T'
with period ratio ≤ 2.
2. The total utilization of the task set decreases
during the transformation step.
• We can therefore confine search to systems with period ratio < 2.
• Transformation $T \rightarrow T'$:
 while $\exists T_k$ with $l \cdot p_k < p_n \leq (l + 1)p_k$ ($l \geq 2$)

 $T_k(p_k, e_k) \rightarrow (l \cdot p_k, e_k)$
 $T_n(p_n, e_n) \rightarrow (p_n, e_n + (l - 1)e_k)$
 end

• Compare utilizations:

$U - U' = \frac{e_k}{p_k} + \frac{e_n}{p_n} - \frac{e_k}{l \cdot p_k} - \frac{e_n + (l - 1)e_k}{p_n}$

$= \left(\frac{1}{l \cdot p_k} - \frac{1}{p_n}\right)(l - 1)e_k > 0$

Q.E.D.

That Little Question about the Phasing...

Definition: [Critical Instant]

[Liu&Layland] If the maximum response time of all jobs in T_i is less
than D_i, then the job of T_i released in the critical instant has the
maximum response time.

[Baker] If the response time of some jobs in T_i exceeds D_i, then
the response time of the job released during the critical instant
exceeds D_i.

Theorem: In a fixed-priority system where every job completes
before the next job in the same task is released, a critical
instant of a task T_i occurs when one of its jobs $J_{i,c}$ is released
at the same time with a job of every higher-priority task.
Proof (informal)

- Assume: Theorem holds for \(k < i \).
- WLOG: \(\forall k < i : \phi_k = 0 \) , and we look at \(J_{i-1} \).
- Observation: The completion time of higher-priority jobs is independent of the release time of \(J_{i-1} \).
- Therefore: The sooner \(J_{i-1} \) is released, the longer it has to wait until it is completed.

Q.E.D.

© R. Bettati

Proof 2 (less informal)

- WLOG: \(\min\{\phi_k \mid k = 1, \ldots, i\} = 0 \)
- Observation: Need only consider time processor is busy executing jobs in \(T_{i-2}, T_{i-1}, \ldots, T_{i-1} \) before \(\phi_i \).
 - If processor idle or executes lower-priority jobs, ignore that portion of schedule and redefine the \(\phi_k \)'s.
- Let \(R_{i-1} \) be the response time for \(J_{i-1} \).
- During \([\phi_i, \phi_i + R_{i-1}] \) a total of \(\lceil (R_{i-1} + \phi_i - \phi_k) / p_k \rceil \) jobs of \(T_k \) become ready for execution.

- so (time-demand analysis): \(R_{i-1} + \phi_i = e_i + \sum_{k=1}^{i-1} \left(\frac{R_{i-1} + \phi_i - \phi_k}{p_k} \right) e_k \)
- and: \(R_{i-1} = e_i + \sum_{k=1}^{i-1} \left(\frac{R_{i-1} + \phi_i - \phi_k}{p_k} \right) e_k - \phi_i \)

© R. Bettati
Optimal Static-Priority Scheduling

Theorem: If a task set can be feasibly scheduled by some static-priority algorithm, it can be feasibly scheduled by DM. ("DM is optimal static-priority algorithm.")

Proof:
- Assume: A feasible static-priority schedule S exists for a task set T. The priority assignment is T₁, T₂, ..., Tₙ. For some k, we have Dₖ > Dₖ+₁.
- We show that we can swap the priority of Tₖ and Tₖ+₁ and the resulting schedule – call it S(k) – remains feasible.

Optimality of DM: Proof (II)

- So, you want to swap the priority of Tₖ and Tₖ+₁?!
- Observation: Response time for each task other than Tₖ and Tₖ+₁ is the same in S and S(k).
- Observation: Response time of Tₖ+₁ in S(k) must be smaller than in S, since Tₖ+₁ is not delayed by Tₖ in S(k).
- Thus: Must prove that deadline of first invocation of Tₖ is also met in S(k). (Critical Instant)
- Let x be the amount of work done in S for all tasks in T₁,...,Tₖ₋₁ during interval [0, dₖ₋₁].
- Note: Amount of work done in S and S(k) for tasks in T₁,...,Tₖ₋₁ is at most x during any interval of length dₖ₋₁.
- We must have

\[x + eₖ + eₖ₊₁ \leq dₖ₊₁ \]

© R. Bettati
Optimality of DM: Proof(III)

- **Observation**: Number of invocations of T_{k+1} in Schedule $S(k)$ during interval $[0, \lfloor d_k/d_{k+1} \rfloor d_{k+1}]$ is at most $\lfloor d_k/d_{k+1} \rfloor$.

- **Observation**: Amount of work for all tasks in T_1, \ldots, T_{k-1} in the interval $[0, \lfloor d_k/d_{k+1} \rfloor d_{k+1}]$ is at most $\lfloor d_k/d_{k+1} \rfloor x$.

- The following condition is sufficient to guarantee that the deadline of the first request of T_k is met in $S(k)$:
 \[
 \lfloor d_k/d_{k+1} \rfloor (x+e_{k+1}) + e_k \leq \lfloor d_k/d_{k+1} \rfloor d_{k+1}
 \]

- This, however, follows from inequality on previous page. (QED)

Why Utilization-Based Tests?

- If no parameter ever varies, we could use simulation.

- But:
 - Execution times may be smaller than e_i
 - Inter-release times may vary.

- Tests are still robust.

- Useful as methodology to define execution times or periods.
Time-Demand Analysis

- Compute total demand on processor time of job released at a critical instant and by higher-priority tasks as function of time from the critical instant.
- Check whether demand can be met before deadline.
- Determine whether \(T_i \) is schedulable:
 - Focus on a job in \(T_i \), suppose release time is critical instant of \(T_i \):
 \[w_i(t) : \text{Processor-time demand of this job and all higher-priority jobs released in } (t_0, t) \]
 \[
 w_i(t) = e_i + \sum_{k=1}^{i-1} \left\lfloor \frac{t}{p_k} \right\rfloor e_k
 \]
 - This job in \(T_i \) meets its deadline if, for some \(t_1 \leq D_i \leq p_i \):
 \[w_i(t_1) \leq t_1 \]
 - If this does not hold, job cannot meet its deadline, and system of tasks is not schedulable by given static-priority algorithm.

Example

\[
\begin{align*}
T_1 &= (3, 1) \\
T_2 &= (5, 1.5) \\
T_3 &= (7, 1.25) \\
T_4 &= (8, 0.5)
\end{align*}
\]

\[w_1(t) = \left\lfloor \frac{t}{p_1} \right\rfloor e_1 \]
Example

\[T_1 = (3, 1) \]
\[T_2 = (5, 1.5) \]
\[T_3 = (7, 1.25) \]
\[T_4 = (8, 0.5) \]

\[w_1(t) = \left\lfloor \frac{t}{p_1} \right\rfloor e_1 \]
\[w_2(t) = \left\lfloor \frac{t}{p_1} \right\rfloor e_1 + \left\lfloor \frac{t}{p_2} \right\rfloor e_2 \]
Priority Driven Scheduling

Example

\[T_1 = (3, 1) \]
\[T_2 = (5, 1.5) \]
\[T_3 = (7, 1.25) \]
\[T_4 = (8, 0.5) \]

Practical Factors

- Non-Preemptable Portions (*)
- Self-Suspension of Jobs (*)
- Context Switches (*)
- Insufficient Priority Resolutions (Limited Number of Distinct Priorities)
- Time-Driven Implementation of Scheduler (Tick Scheduling)
- Varying Priorities in Fixed-Priority Systems
Practical Factors I: Non-Preemptability

- Jobs, or portions thereof, may be non-preemptable.

Definition: [non-preemptable portion] Let's denote by ρ_i the largest non-preemptable portion of jobs in T_i.

Definition: A job is said to be **blocked** if it is prevented from executing by lower-priority job. (priority-inversion)

- When testing schedulability of a task T_i, we must consider
 - higher-priority tasks
 and
 - non-preemptable portions of lower-priority tasks

Analysis with Non-Preemptable Portions

Definition: The **blocking time** b_i of Task T_i is the longest time by which any job of T_i can be blocked by lower-priority jobs:

$$b_i = \max_{i+1 \leq k \leq n} \rho_k$$

- **Time-demand** function with blocking:

$$w_i(t) = e_i + b_i + \sum_{k=1}^{i-1} \left\lceil \frac{t}{p_k} \right\rceil e_k$$

- **Utilization bounds** with blocking:
 test one task at a time:

$$\frac{e_1}{p_1} + \frac{e_2}{p_2} + \ldots + \frac{e_i + b_i}{p_i} = \sum_{k=1}^{i} \frac{e_k}{p_k} + \frac{b_i}{p_i} \leq U_{RM}(i)$$
Non-Preemptability: Example

$T_1 = (4, 1)$
$T_2 = (5, 1.5)$
$T_3 = (9, 2)$

Practical Factors II: Self-Suspension

Definition: Self-suspension of a job occurs when the job waits for an external operation to complete (RPC, I/O operation).

- Assumption: We know the maximum length of external operation; i.e., the duration of self-suspension is bounded.

- Example:

 $T_1 = (\phi_1=0, p_1=4, e_1=2.5)$

 $T_2 = (\phi_2=3, p_2=7, e_2=2.0)$

- Analysis: b^{SS}_i: Blocking time of T_i due to self-suspension.

 $b^{SS}_i = \max \text{ self-suspension time of } T_i$

 $+ \sum_{k=1}^{i-1} \min(c_k, \max \text{ self-suspension time of } T_k)$
Self-Suspension with Non-Preemptable Portions

- Whenever job self-suspends, it loses the processor.
- When tries to re-acquire processor, it may be blocked by tasks in non-preemptable portions.

Analysis:

\[b_i = b_{SS}^i + (K_i + 1) b_{NP}^i \]

Definition: [Job-level fixed priority assignment]
In a job-level fixed priority assignment, each job is given a fixed priority for its entire execution.

- Case I: No self-suspension
 - In a job-level fixed-priority system, each job preempts at most one other job.
 - Each job therefore causes at most two context switches
 - Therefore: Add the context switch time twice to the execution time of job: \(e_i = e_i + 2 \text{ CS} \)

- Case II: Self-suspensions can occur
 - Each job suffers two more context switches each time it self-suspends
 - Therefore: Add more context switch times appropriately: \(e_i = e_i + 2 (K_i + 1) \text{ CS} \)
Practical Factors IV: Limited Priority Levels

- Examples: IEEE 802.5 has 8 priority levels, many real-time OS’s have at most 256 priority levels, EIA-600 has 3 priorities.
- Jobs of same priority are scheduled either in FIFO or in Round-Robin fashion.

Definition: Let $T_E(i)$ denote the subset of tasks, other than T_i, that have the same priority as T_i.

- Time-demand function:
 \[w_i(t) = e_i + b_i + \sum_{T_k \in T_E(i)} e_k + \sum_{T_k \in T_H(i)} \left\lfloor \frac{t}{p_k} \right\rfloor e_k \]

Schedulability Loss due to Limited Priority Levels in Fixed-Priority Systems

- **Uniform Mapping:** task priorities are uniformly mapped to available priorities.
- Example: 9 tasks and 3 priority levels. Each priority levels is assigned 3 tasks.
- Problem: Highest-priority contains 3 tasks, which are scheduled according to FIFO.
- This results in low schedulability.

- **Constant-Ratio Mapping:** Keep ratio between partition levels constant.
- This assigns fewer tasks to high priorities, and thus increases schedulability level.
- Schedulability bounds exist that take partition ratios into account.