Priority-Driven Scheduling of Periodic Tasks

• Priority-driven vs. clock-driven scheduling:

 clock-driven:

 cyclic schedule → executive → processor

 priority-driven:

 tasks → priority queue → processor

• Assumptions:
 – tasks are periodic
 – jobs are ready as soon as they are released
 – preemption is allowed
 – tasks are independent
 – no aperiodic or sporadic tasks

• We will later:
 – integrate aperiodic and sporadic tasks
 – integrate resources
 – etc.

Why Focus on Uniprocessor Scheduling?

• Dynamic vs. static multiprocessor scheduling:

 Dynamic:

 tasks

 priority queue

 processors

 Static:

 tasks

 task assignment

 partn1. → partn2. → partn3. → partn4.

 local priority queues

• Poor worst-case performance of priority-driven algorithms in dynamic environments.
• Difficulty in validating timing constraints.
Static-Priority vs. Dynamic Priority

- **Static-Priority:** All jobs in task have same priority.

 - example:

 Rate-Monotonic: “The shorter the period, the higher the priority.”

 \[
 T_1 = (5, 3, 5) \quad T_1 \quad T_2 = (3, 1, 3) \quad T_2
 \]

- **Dynamic-Priority:** May assign different priorities to individual jobs.

 - example:

 Earliest-Deadline-First: “The nearer the absolute deadline, the higher the priority.”

 \[
 T_1 \quad T_1 \quad \text{is not preempted}
 \]

Example Algorithms

- **Static-Priority:**

 - **Rate-Monotonic (RM):** “The shorter the period, the higher the priority.” [Liu+Layland ’73]

 - **Deadline-Monotonic (DM):** “The shorter the relative deadline, the higher the priority.” [Leung+Whitehead ’82]

- Dynamic-Priority:

 - **EDF:** Earliest-Deadline-First.

 - **LST:** Least-Slack-Time-First.

 - **FIFO/LIFO**

 - **etc.**

For arbitrary relative deadlines, DM outperforms RM.
Considerations about Priority-Driven Scheduling

- FIFO/LIFO do not take into account urgency of jobs.
- Static-priority assignments based on functional criticality are typically non-optimal.
- We confine our attention to algorithms that assign priorities based on temporal parameters.

- **Def.** [Schedulable Utilization]
 Every set of periodic tasks with total utilization less or equal than the schedulable utilization of an algorithm can be feasibly scheduled by that algorithm.

- The higher the schedulable utilization, the better the algorithm.

- Schedulable utilization is always less or equal 1.0!

Scheduleable Utilization of FIFO

- Result of Opinion Poll in CPSC-663 of Fall 2001:
Schedulable Utilization of FIFO (II)

- **Theorem:** \(U_{FIFO} = 0 \)

- **Proof:**

 Given any utilization level \(\varepsilon > 0 \), we can find a task set, with utilization \(\varepsilon \), which may not be feasibly scheduled according to FIFO.

 Example task set:

 \[
 \begin{align*}
 T_1 & : e_1 = \frac{\varepsilon}{2} p_1 \\
 T_2 & : \begin{cases}
 p_2 = \frac{2}{\varepsilon} p_1 \\
 e_2 = p_1
 \end{cases} \Rightarrow U = \varepsilon
 \end{align*}
 \]

 ![Diagram of two tasks with utilization and execution times]

Optimality of EDF for Periodic Systems

- **Theorem:** A system of independent preemptable tasks with relative deadlines equal to their periods is feasible *iff* their total utilization is less or equal 1.

- **Proof:** *only-if:* obvious

 if: find algorithm that produces feasible schedule of any system with total utilization not exceeding 1.

 Try EDF.

- **We show:** If EDF fails to find feasible schedule, then the total utilization must exceed 1.

- **Assumptions:**

 - *At some time* \(t \), Job \(J_{i,c} \) of Task \(T_i \) misses its deadline.

 - *WLOG:* if more than one job have deadline \(t \), break tie for \(J_{i,c} \).
Optimality of EDF (cont)

- Case 1: Current period of every task begins at or after \(r_{i,c} \).
- Case 2: Current period of some task may start before \(r_{i,c} \).

Case 1:

- Current jobs other than \(J_{i,c} \) do not execute before time \(t \).

\[
\begin{align*}
t &< \frac{(t-\phi) e_i}{p_i} + \frac{t-\phi}{\sum_{k \in T} p_k} e_k \\
&\leq t \cdot \frac{e_i}{p_i} + t \cdot \sum_{k \in T} \frac{e_k}{p_k} \\
&= t \cdot U \\
\Rightarrow U &> 1
\end{align*}
\]

Optimality of EDF (cont 2)

- Case 2: Some current periods start before \(r_{i,c} \).
- Notation:
 - \(T \): Set of all tasks.
 - \(T' \): Set of tasks where current period starts before \(r_{i,c} \).
 - \(T-T' \): Set of tasks where current period starts at or after \(r_{i,c} \).

- \(t_l \): Last point in time before \(t \) when some current job in \(T' \) is executed.
- No current job is executed immediately after time \(t_l \).
- Why?
 1. All jobs in \(T' \) are done.
 2. Jobs in \(T-T' \) not yet ready.
Case 2 (cont)

\[
t - t_i < \frac{(t - t_i - \phi'_i) e_i}{p_i} + \sum_{t_i \leq t < T} \frac{|t - t_i - \phi'_i|}{p_i} e_i \\
\leq (t - t_i) \frac{e_i}{p_i} + (t - t_i) \sum_{t_i \leq t < T} \frac{e_i}{p_i} \leq (t - t_i) U \\
\Rightarrow \quad U > 1
\]

- What about assumption that processor never idle?

What about Static Priority?

- Static-Priority is not optimal!
- Example:

\[
T_1 = (2, 1, 2) \\
T_2 = (5, 2.5, 5)
\]

\[
U = \frac{e_1}{p_1} + \frac{e_2}{p_2} = 1 \leq 100\%
\]

- So: Why bother with static-priority?
 - simplicity
 - predictability
Unpredictability of EDF Scheduling

- Over-running jobs hold on to their priorities
- Example:

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

Normal Operation

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

T3 over-runs by a bit more than one time unit

Unpredictability of EDF Scheduling (II)

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

T3 over-runs for a bit longer....

\[T_1 = (1,2) \]
\[T_2 = (1,4) \]
\[T_3 = (2,8) \]

The same situation using Rate-Monotonic Scheduling: high-priority tasks are protected
Schedulability Bounds for Static-Priority

- Simply-Periodic Workloads:
 Simply-Periodic: A set of tasks is simply periodic if, for every pair of tasks, one period is multiple of other period.

- Theorem: A system of simply periodic, independent, preemptable tasks whose relative deadlines are equal to their periods is schedulable according to RM iff their total utilization does not exceed 100%.

 Proof: Assume T_i misses deadline at time t.
 t is integer multiple of p_i.
 t is also integer multiple of $p_k, \forall p_k < p_i$.

 => total time to complete jobs with deadline t:

 If job misses deadline, then

 \[
 \sum_{i=1}^{k} t \cdot e_k = t \cdot U_i = t \cdot \sum_{i=1}^{k} \frac{e_i}{p_i}
 \]

 \[U_i > 1 \Rightarrow U > 1.\] Q.E.D.

Schedulable Utilization of Tasks with $D_i=p_i$,
Using Rate-Monotonic Algorithm

- Theorem: [Liu&Layland ‘73] A system of n independent, preemptable periodic tasks with $D_i=p_i$ can be feasibly scheduled by the RM algorithm if its total utilization U is less or equal to

 \[U_{RM}(n) = n(2^{ln} - 1)\]

 Why not 1.0?

 $T_1 = (2, 1, 2)$

 $T_2 = (5, 2.5, 5)$

 \[
 T_1 \quad \text{misses deadline!} \\
 T_2
 \]

 \[
 \begin{align*}
 T_1 & = (2, 1, 2) \\
 T_2 & = (5, 2.5, 5)
 \end{align*}
 \]

 \[
 \begin{align*}
 T_1 & = (2, 1, 2) \\
 T_2 & = (5, 2.5, 5)
 \end{align*}
 \]

 \[
 \begin{align*}
 T_1 & = (2, 1, 2) \\
 T_2 & = (5, 2.5, 5)
 \end{align*}
 \]

- Proof: First, show that theorem is correct for special case where longest period $p_n < 2p_1$ (p_1 = shortest period).
 Will remove this restriction later.
Proof of Liu & Layland

- General idea: Find the most-difficult-to-schedule system of n tasks among all difficult-to-schedule systems of n tasks.

- **Difficult-to-schedule**: Fully utilizes processor for some time interval. Any increase in execution time would make system unschedulable.

- **Most-difficult-to-schedule**: system with lowest utilization among difficult-to-schedule systems.

- Each of the following 4 steps brings us closer to this system.

 - **Step 1**: Identify phases of tasks in most-difficult-to-schedule system. System must be in-phase. (talk about this later)

- Proof of Liu & Layland (cont)

 - **Step 2**: Choose relationship between periods and execution times. Hypothesize that parameters of MDTS system are thus related.

 - Confine attention to first period of each task.
 - Tasks keep processor busy until end of period p_k.

 \[
 e_k = p_{k+1} - p_k \\
 e_n = p_n - 2\sum_{k=1}^{e_k} e_k \\
 \text{call this Property A}
 \]
Proof Liu & Layland (cont)

- Step 3: Show that any set of D-T-S tasks that are not related according to Property A has higher utilization.

- What happens if we deviate from Property A?

- Deviate one way: Increase execution of some high-priority task by ε:

 $e'_1 = e_1 + \varepsilon = p_2 - p_1 + \varepsilon$

 Must reduce execution time of some other task:

 $e'_k = e_k - \varepsilon$

 $U' - U = \frac{e'_1}{p_1} + \frac{e'_k}{p_k} - \frac{e_1}{p_1} - \frac{e_k}{p_k} = \frac{\varepsilon}{p_1} - \frac{\varepsilon}{p_k}

Proof Liu & Layland (cont)

- Deviate other way: Reduce execution time of some high-priority tasks by ε:

 $e''_1 = e_1 - \varepsilon = p_2 - p_1 - \varepsilon$

 Must increase execution time of some lower-priority task:

 $e''_k = e_k + 2\varepsilon$

 $U'' - U = \frac{2\varepsilon}{p_k} - \frac{\varepsilon}{p_1}$
Proof Liu&Layland (cont)

- Step 4: Express the total utilization of the M-D-T-S task system (which has Property A).

- Define
\[g_i := \frac{p_n - p_i}{p_i} \Rightarrow \begin{cases} e_i = g_i p_i - g_{i+1} p_{i+1} \\ e_n = p_n - 2g_i p_i \end{cases} \]

\[U = \sum_{i=1}^{n} e_i = \sum_{i=1}^{n} \left(g_i - g_{i+1} \frac{p_{i+1}}{p_i} \right) + 1 - 2g_i \frac{p_i}{p_n} = 1 + g_i \frac{g_i - 1}{g_i + 1} + \sum_{i=2}^{n} g_i \frac{g_i - g_{i+1}}{g_i + 1} \]

- Find least upper bound on utilization: Set first derivative of \(U \) with respect to each of \(g_i \)'s to zero:
\[\frac{\partial U}{\partial g_i} = \frac{g_i^2 + 2g_i - g_{i+1}}{(g_i + 1)^2} - \frac{g_{i+1}}{g_i + 1} = 0 \]

\[g_j = 2^{\left(\frac{n-j}{n}\right)n} - 1 \]
\[\Rightarrow U = n(2^{\frac{1}{n}} - 1). \]

Q.E.D.

Period Ratios > 2

- We show:
 1. Every D-T-S task system \(T \) with period ratio > 2 can be transformed into D-T-S task system \(T' \) with period ratio \(\leq 2 \).
 2. The total utilization of the task set decreases during the transformation step.
- We can therefore confine search to systems with period ratio \(< 2 \).

- 1. Transformation \(T-T' \):
 - While \(\exists T_k \) with \(l \cdot p_k < p_n \leq (l+1) p_k \) \((l \geq 2) \)
 - \(T_k(p_k, e_k) \rightarrow (l \cdot p_k, e_k) \)
 - \(T_k(p_n, e_n) \rightarrow (p_n, e_n + (l-1)e_k) \)

- Compare utilizations:
\[U - U' = \frac{e_n}{p_n} + \frac{e_n}{l \cdot p_k} = \frac{e_n}{p_n} + \frac{(l-1)e_k}{l \cdot p_k} \]
\[= \frac{1}{l \cdot p_k} - \frac{1}{p_n} \]
\[(l-1)e_k > 0 \]

Q.E.D.
Regarding that Little Question about the Phasing...

- **Definition:**
 - [Critical Instant]
 - [Liu&Layland] If the maximum response time of all jobs in T_i is less than D_i, then the job of T_i released in the critical instant has the maximum response time.
 - [Baker] If the response time of some jobs in T_i exceeds D_i, then the response time of the job release during the critical instant exceeds D_i.

- **Theorem:** In a fixed-priority system where every job completes before the next job in the same task is released, a critical instant of a task T_i occurs when one of its jobs $J_{i,c}$ is released at the same time with a job of every higher-priority task.

Proof (informal)

- **Assume:** Theorem holds for $k < i$.
- **WLOG:** $\forall k < i: \phi_k = 0$, and we look at $J_{i,1}$.

- **Observation:** The completion time of higher-priority jobs is independent of the release time of $J_{i,1}$.

- **Therefore:** The sooner $J_{i,1}$ is released, the longer it has to wait until it is completed.

Q.E.D.
Proof 2 (less informal)

- WLOG: $\min\{\phi_i | k = 1, \ldots, i\} = 0$

- Observation: Need only consider time processor is busy executing jobs in $T_j, T_{j+1}, \ldots, T_{j+k-1}$ before ϕ_i.
 If processor idle or executes lower-priority jobs, ignore that portion of schedule and redefine the ϕ_k’s.

- During interval $[\phi_k, \phi_k + R_{\text{max}}]$ a total of $\left\lceil \frac{R_{\text{max}} + \phi_k - \phi_k}{p_k} \right\rceil$ jobs in T_k become ready for execution.

- so: $R_{\text{max}} + \phi_k = e_i + \sum_{k=1}^{i-1} \left\lceil \frac{R_{\text{max}} + \phi_k - \phi_k}{p_k} \right\rceil e_i$

- and: $R_{\text{max}} = e_i + \sum_{k=1}^{i-1} \left\lceil \frac{R_{\text{max}} + \phi_k - \phi_k}{p_k} \right\rceil e_i - \phi_k$

Why Utilization-Based Tests?

- If no parameter ever varies, we could use simulation.

- But:
 - Execution times may be smaller than e_i
 - Interrelease times may vary.

- Tests are still robust.

- Useful as methodology to define execution times or periods.
Optimality of Deadline-Monotonic, Rate-Monotonic

- **Theorem:** If a task set can be feasibly scheduled by some static-priority algorithm, it can be feasibly scheduled by DM.

- **Proof:**
 - Assume: A feasible schedule exists for a task set T. The priority assignment is T_1, T_2, \ldots, T_n.
 - For some k, we have $D_k > D_{k+1}$.
 - We show that we can swap the priority of T_k and T_{k+1} and the resulting schedule remains feasible.

Time-Demand Analysis

- Compute total demand on processor time of job released at a critical instant and by higher-priority tasks as function of time from the critical instant.
- Check whether demand can be met before deadline.
- Determine whether T_i is schedulable:
 - Focus on a job in T_i, suppose release time is critical instant of T_i:
 - Processor-time demand of this job and all higher-priority jobs released in (t_0, t):
 $$w_i(t) = e_i + \sum_{j<i}^{i} \left(\frac{t}{p_j} \right) e_j$$
 - This job in T_i meets its deadline if, for some
 $$t_i \leq D_i \leq p_i : w_i(t_i) \leq t_i$$
 - If this does not hold, job cannot meet its deadline, and system of tasks is not schedulable by given static-priority algorithm.
Example

\[T_1 = (3, 1) \]
\[T_2 = (5, 1.5) \]
\[T_3 = (7, 1.25) \]
\[T_4 = (9, 0.5) \]
Example

\[T_1 = (3, 1) \]
\[T_2 = (5, 1.5) \]
\[T_3 = (7, 1.25) \]
\[T_4 = (9, 0.5) \]
Practical Factors

- Non-Preemptable Portions (*)
- Self-Suspension of Jobs (*)
- Context Switches (*)
- Insufficient Priority Resolutions (Limited Number of Distinct Priorities)
- Time-Driven Implementation of Scheduler (Tick Scheduling)
- Varying Priorities in Fixed-Priority Systems

Practical Factors I: Non-Preemptability

- Jobs, or portions thereof, may be non-preemptable.

- Definition: **non-preemptable portion**
 \[\rho_i : \text{largest non-preemptable portion of jobs in } T_i \]

- Definition: **blocked job**
 A job is said to be **blocked** if it is prevented from executing by lower-priority job. (priority-inversion)

- When testing schedulability of a task \(T_i \), we must consider
 - higher-priority tasks
 and
 - non-preemptable portions of lower-priority tasks
Analysis with Non-Preemptable Portions

- Definition: **[blocking time]**

The **blocking time** \(b_i \) of Task \(T_i \) is the longest time by which any job of \(T_i \) can be blocked by lower-priority jobs:

 \[
 b_i = \max_{j:1 \leq j < n} \rho_k
 \]

- Time-demand function with blocking:

 \[
 w_i(t) = e_i + b_i + \sum_{k=1}^{n} \left(\frac{t}{p_k} \right) \rho_k
 \]

- Utilization bounds with blocking:

 Test one task at a time:

 \[
 \frac{e_1}{p_1} + \frac{e_2}{p_2} + \ldots + \frac{e_i + b_i}{p_i} = \sum_{i=1}^{n} \frac{e_i}{p_k} + \frac{b_i}{p_i} \leq U_{RM}(t)
 \]

Non-Preemptability: Example

\[T_1 = (4, 1) \]
\[T_2 = (5, 1.5) \]
\[T_3 = (9, 2) \]
Practical Factors II: Self-Suspension

- Definition:
 [Self-Suspension]
 Self-suspension of a job occurs when the job waits for an external operation to complete (RPC, I/O operation).

- Assumption: We know the maximum length of external operation; i.e., the duration of self-suspension is bounded.

- Example:
 - Analysis: \(b_{SS}^i \): Blocking time of \(T_i \) due to self-suspension.
 \[b_{SS}^i = \text{max. self-suspension time of } T_i + \sum_{j=1}^{K_i} \min(e_j, \text{max. self-suspension time of } T_i) \]

Self-Suspension with Non-Preemptable Portions

- Whenever job self-suspends, it loses the processor.
- When tries to re-acquire processor, it may be blocked by tasks in non-preemptable portions.

- Analysis:
 \(b_{NP}^i \): Blocking time due to non-preemptable portions
 \(K_i \): Max. number of self-suspensions
 \(b_i \): Total blocking time

\[b_i = b_{SS}^i + (K_i + 1) b_{NP}^i \]
Practical Factors III: Context Switches

<table>
<thead>
<tr>
<th>Definition:</th>
<th>Job-level fixed priority assignment</th>
<th>In a job-level fixed priority assignment, each job is given a fixed priority for its entire execution.</th>
</tr>
</thead>
</table>

- **Case I: No self-suspension**
 - In a job-level fixed-priority system, each job preempts at most one other job.
 - Each job therefore causes at most two context switches.
 - Therefore: Add the context switch time twice to the execution time of job:
 \[e_i = e_i + 2 \text{ CS} \]

- **Case II: Self-suspensions can occur**
 - Each job suffers two more context switches each time it self-suspends.
 - Therefore: Add more context switch times appropriately:
 \[e_i = e_i + 2(K_i + 1) \text{ CS} \]