
CPSC 663 Machine Problem 1 1

Machine Problem 1: Cyclic Executive in Java

(Due Date: To Be Announced)

Introduction

In this machine problem, we will acquire an understanding of the actual operation of
scheduling subsystems for real-time systems. Following the approach used in Jane Liu's
textbook, we will use a language with threading support (in our case Java) as the
underlying platform.

In this particular exercise, we will be implementing a cyclic executive scheduler. First,
we will implement a basic cyclic executive scheduler, which handles periodic real-time
tasks only. We will then add capabilities to handle aperiodic tasks, with and without slack
stealing. As a stretch goal, we will implement a sporadic task server, based on an EDF
scheduler.

We will not be implementing the whole system from scratch. Instead, we will be making
use of a significant amount of skeleton code and of pre-defined interfaces. This will (a)
make sure that we all proceed roughly in the right direction, (b) allow us to do most of
the work without detailed knowledge of Java, and (c) significantly reduce the amount of
work required.

The skeleton code and the interfaces somewhat mimic a simplified version of the Real-
Time Java Specification [www.rtj.org], which is likely to become the industry standard
for Real-time Java platforms.

Note: It is unlikely that a real-life system would be implemented the way we do it here.
The mechanisms that we use carry much overhead. For example, we will be realizing all
tasks (periodic, aperiodic, and sporadic) as extensions to Java threads. (For one, Java
itself uses a priority-driven scheduler for its threads; this means that we are running a
cyclic executive over a priority-driven scheduler. Also, some Java Virtual Machines
create separate OS threads to handle Java threads; this means that we have scheduling
happening at three layers in total: our real-time scheduler, the Java scheduler, and the OS
scheduler.) In particular for periodic tasks this is not appropriate, where a real cyclic
executive would handle individual chunks of code instead of blocking and unblocking
existing threads.

Real-Time Thread Model

The thread model rather closely follows the traditional Java thread model, except that all
threads are under the control of a scheduler thread. Instead of using Thread classes, we
use RealTimeThread classes, which inherit the java.lang.Thread. The class diagram in
Figure 1 illustrates the relationship between the various classes.

CPSC 663 Machine Problem 1 2

Each system contains a single scheduler object, which starts, dispatches, and generally
manages the schedulable objects in that system. The scheduler becomes aware of a new
schedulable object whenever such an object gets created. The scheduler then starts
executing the object when the application invokes the start() method of the
schedulable object.

Aperiodic and Sporadic threads provide a triggerInvocation() call, which is called
by the application, and simulates the asynchronous invocation of the threads.

CPSC 663 Machine Problem 1 3

Classes

Figure 1 Class Diagram

EDFScheduler (Example)

CyclicExecutive

FifoScheduler (Example)

PeriodicThread

SporadicThread

AperiodicThread

extends

implements

Interface

java.lang.Runnable

Scheduler

Provided Class

RealtimeThread

java.lang.Thread

java.lang.Object

To Be Implemented

CPSC 663 Machine Problem 1 4

Class RealtimeThread

Declaration
public class RealtimeThread extends java.lang.Thread

Implemented Interface: java.lang.Runnable

Description
The class RealtimeThread implements the interface java.lang.Runnable. The instances
of RealtimeThread class are managed by the scheduler. The constructor of
RealtimeThread informs the scheduler of the new schedulable task. The execution of the
thread is then initiated upon invocation of the method start().

Constructor
public RealtimeThread()
 Constructs an instance of class RealtimeThread.

Methods
public void start()
 Start “this”, the RealtimeThread instance.
 This method overrides the method java.lang.Thread.start().
 Because java.lang.Thread.start() method creates and starts an OS thread.

public boolean waitForNextInvocation()

This blocks the thread until the next invocation is released. For periodic threads,
the next invocation is released by the scheduler. For aperiodic and sporadic
threads, the next invocation is released by the application program, using the
triggerInvocation() method. (In this way we simulate asynchronous
invocations.) True when the thread is not in a deadline miss condition. False
when the last invocation just missed the deadline. The return value is always True
for aperiodic threads.

Class PeriodicThread

Declaration
public class PeriodicThread extends RealTimeThread

Implemented Interface: java.lang.Runnable

Description
The class PeriodicThread inherits RealtimeThread. The instances of PeriodicThread
class (and their executions) are managed by the scheduler.

CPSC 663 Machine Problem 1 5

Constructor
public PeriodicThread(long period, long execTime)
 Constructs an instance of class PeriodicThread with given parameters. The
 thread is added to the pool controlled by the periodic-tasks server by calling the
 Scheduler.add() method.

Methods
public long getPeriod();
public long getExecTime();

Class AperiodicThread

Declaration
public class AperiodicThread extends RealTimeThread

Implemented Interface: java.lang.Runnable

Description
This class implements aperiodic tasks.

Constructor
public AperiodicThread(long execTime)
 Constructs an instance of class AperiodicThread. The thread is added to the pool
 controlled by the aperiodic-tasks server by calling the Scheduler.add() method.
 The execTime parameter is an estimate on the execution time, and allows for a
 better scheduling of aperiodic tasks.

Methods
public void triggerInvocation()

This method is called by the application, and simulates the asynchronous
triggering of a new invocation of the task.

public long getExecTime();

Class SporadicThread

Declaration
public class SporadicThread extends RealTimeThread

Implemented Interface: java.lang.Runnable

CPSC 663 Machine Problem 1 6

Description
This class implements sporadic tasks.

Constructor
public SporadicThread(long execTime, long deadline)
 Constructs an instance of class SporadicThread. The thread is added to the pool
 controlled by the sporadic-tasks server by calling the Scheduler.add() method.
 The parameter execTime specifies the worst-case execution time, which is used to
 determine at invocation time whether the invocation can be feasibly scheduled.

Methods
public boolean triggerInvocation()

This method is called by the application, and simulates the asynchronous
triggering of a new invocation of the task. Returns True if the new invocation can
be accepted, False otherwise.

public long getExecTime();
public long getDeadline();

Interface Scheduler

Declaration
public interface Scheduler extends java.lang.Runnable

Known Implementing Classes: FIFOScheduler, EDFScheduler, CyclicExecutive

Description
The interface Scheduler defines how to manage the execution of schedulable objects.

Methods
(Note: Except for the constructor and the add() method, the scheduler is invisible to the
application. You are therefore free to make some modifications to this interface. This
means that you may make do with a subset of these methods or with modifications to
some of these methods.)

public static Scheduler getScheduler()
 Returns the instance of current running instance of Scheduler.
 If none of Scheduler is running, this method invokes one instance of Scheduler.

public boolean add(RealtimeThread task)
 Inform the scheduler of this task, the instance of RealtimeThread.
 Returns true if the resulting system is feasible.
 Returns false if not.

public void start(RealtimeThread task)

Start this task.

CPSC 663 Machine Problem 1 7

This method will typically create a Java thread.

public void stop(RealtimeThread task)
 Stop this task, the instance of RealtimeThread.

public void suspend(RealtimeThread task)

Suspend this task, the instance of RealtimeThread.

public void resume(RealtimeThread task)

Resume this task, the instance of RealtimeThread.

public long getCurrentTime()
 Return the current time in milliseconds.

Class CyclicExecutive

Declaration
public class CyclicExecutive implements Scheduler

Implemented Interfaces: java.lang.Runnable, Scheduler

Description
The CyclicExecutive class is for Timer-Driven scheduling. The following is a very much
simplified realization – in pseudocode – of the run() method for the cyclic executive
scheduler.

public final void run() {
 long waitingTime;
 long currentTime;

 synchronized(this) {
 while(true) {
 // Record current time.
 currentTime = getCurrentTime();
 // Take appropriate action if previous
 // job missed deadline.
 missedDeadlineHandler();
 // Wake up the periodic tasks server to execute
 // the job slices
 WakeupPeriodicTaskServer();
 // If time allows, run sporadic task server.
 // If time allows, run aperiodic task server.
 // Get waiting time for next timer interrupt.
 waitingTime = getNextInterrupt() - currentTime;
 // Sleep until the next timer interrupt.
 wait(waitingTime);
 }

CPSC 663 Machine Problem 1 8

 }
}

Example Program

import cpsc663;

class PeriodicHelloThread extends PeriodicThread {

 // constructor()
 public PeriodicHelloThread(long period, long execTime) {
 super(period, execTime);
 }

 public void run() {
 System.out.println("Hello Periodic World");
 System.out.flush();

 while (waitForNextInvocation()) {
 System.out.println("HELLO AGAIN!");
 System.out.flush();
 }
 } /* run() */

 public static void main(String[] args) {

 PeriodicHelloThread rtThread =
 new PeriodicHelloThread(1000L, 10L);
 // periodic task with period 1000ms and
 // worst execution time 10ms.

 (CyclicExecutive) defaultScheduler =
 CyclicExecutive.getScheduler();

 if (defaultScheduler.add(rtThread)) {
 rtThread.start();
 else {
 System.out.println(“Admission Denied!”);
 }
 }
}

Implementation Note

Your scheduler will be controlling the execution of Java threads. For this, you will
probably have to make substantial use of synchronization primitives to block/unblock
threads. In addition, you will have to play with priorities of Java threads (don’t go
overboard with this,) in order to keep control with the cyclic executive and the
periodic/aperiodic/sporadic task server threads. For a good example of how to play with
priorities and schedulers, see the Jimy/Java URL below.

Evaluation / Test

CPSC 663 Machine Problem 1 9

You will be provided a test application. (Check the Web site!) The purpose of this
evaluation is to check whether your scheduler works, and to visualize whether/how it
guarantees deadlines for already accepted tasks. Also, this test will visualize the behavior
of sporadic and aperiodic tasks.

What to Hand In

You can turn in this homework in two levels; with and without support for EDF-
scheduled sporadic tasks.

Basic Level: At this level, you realize the Cyclic Executive with support for aperiodic
tasks and for slack stealing. This means that you implement (a) the admission control and
the scheduling for periodic tasks (b) the scheduling of aperiodic tasks (no admission
control needed here) with the support for slack stealing.

Advanced Level: You add support for sporadic tasks. This means that you add an EDF-
based server for sporadic tasks. Also, the method TriggerInvocation() invokes an
admission control test to make sure that the new invocation can be feasibly scheduled. If
no feasible scheduling is possible, the TriggerInvocation() method returns False to
the application.

You have to develop the program in Java. Don’t use JNI (Java Native Interface).
Therefore you can use either Solaris or Windows NT.

Design Document

You have to hand in design document along with the source code.

Hard Copy of Java Source Code

Hand in a hard copy of all the code you created.

Soft Copy of Java Source Code

You have to turn in Java source code and Makefile.

Reference URLs

http://www.rtj.org

http://www-cad.eecs.berkeley.edu/~jimy/java/index.html

CPSC 663 Machine Problem 1 10

