
CPSC-663: Real-Time Systems Clock-Driven Scheduling

1

Clock-Driven Scheduling (in-depth)

Task Scheduler:
 i := 0; k := 0;
 <set timer to expire at time t0>
 BEGIN LOOP
 <wait for timer interrupt>
 i := i+1;
 k:= i mod N;
 <set timer to expire at time

 (i DIV N)*H + tk >
 IF J(tk-1)is empty
 THEN wakeup(aperiodic)
 ELSE wakeup(J(tk-1))
 END LOOP
END Scheduler;

• Precompute static schedule off-line
(e.g. at design time): can afford
expensive algorithms.

• Idle times can be used for aperiodic
jobs.

• Possible implementation:
Table-driven

• Scheduling table has entries of type
(tk, J(tk)) , where
tk : decision time
J(tk) : job to start at time tk

• Input: Schedule (tk, J(tk))
k = 0,1,…,N-1

Cyclic Schedules: General Structure

• Scheduling decision is made periodically:

• Scheduling decision is made periodically:
– choose which job to execute

– perform monitoring and enforcement operations

• Major Cycle: Frames in a hyperperiod.

frame f

decision points

hyperperiod H

major cycle

CPSC-663: Real-Time Systems Clock-Driven Scheduling

2

Frame Size Constraints

• Frames must be sufficiently long so that every job can start and complete
within a single frame:

• The hyperperiod must have an integer number of frames:

• For monitoring purposes, frames must be sufficiently small that between
release time and deadline of every job there is at least one frame:

)max()1(ief ≥

)""()2(HdividesfHf

ii

i

i

Dfpf

fptt

Dttf

≤−
≥−

≤−−

),gcd(2)3(

),gcd('

)'(2

t t+f t+2f t+3ft’ t’+Di t’+pi

Frame Sizes: Example

• Task set:

660

)22,3,22(

)26,2,20(

)14,1,15(

1

1

1

=
=
=
=

H

T

T

T

6,5,4,3:for valuespossible

6,5,4,3,2),gcd(2:)3(

,..10,6,5,4,3,2)2(

3:)1(

f

fDifpifi

fHf

fefi i

⇒

=⇒≤−∀
=⇒
≥⇒≥∀

pi ei Di

CPSC-663: Real-Time Systems Clock-Driven Scheduling

3

Slicing and Scheduling Blocks

• Slicing

?!
4)3(

5)1(

)20,5,20(

)5,2,5(

)4,1,4(

3

2

1

≤⇒
≥⇒

=
=
=

f

f

T

T

T

4
4)3(

3)1(

)20,1,20(

)20,3,20(

)20,1,20(

)5,2,5(

)4,1,4(

33

32

31

2

1

=

≤⇒
≥⇒

=
=
=
=
=

f
f

f

T

T

T

T

Tslice
T3

1 31 1 1 1 12 2 22 3332

0 4 8 12 16 20

…..

scheduling block

H

pi ei Di

Cyclic Executive

Input: Stored schedule: L(k) for k = 0,1,…,F-1;

Aperiodic job queue.

TASK CYCLIC_EXECUTIVE:
 k = 0; /* current frame */
 BEGIN LOOP
 accept clock interrupt at time k*f;
 IF <the last job is not completed> take action;
 CurrentBlock := L(k);
 k := k+1 mod F;
 IF <any slice in CurrentBlock is not released> take action;
 WHILE <CurrentBlock is not empty>
 execute the first slice in it;
 remove the first slice from CurrentBlock;
 END WHILE;
 WHILE <the aperiodic job queue is not empty>
 execute the first job in the queue;
 remove the just completed job;
 END WHILE;
 END LOOP;
END CYCLIC_EXECUTIVE;

CPSC-663: Real-Time Systems Clock-Driven Scheduling

4

What About Aperiodic Jobs?

• Typically:
– Scheduled in the background.

– Their execution may be delayed.

• But:
– Aperiodic jobs are typically results of external events.

• Therefore:

– The sooner the completion time, the more responsive the system
– Minimizing response time of aperiodic jobs becomes a design issue.

• Approach:
– Execute aperiodic jobs ahead of periodic jobs whenever possible.
– This is called Slack Stealing.

Slack Stealing (Lehoczky et al., RTSS’87)

xk Amount of time allocated to slices executed during frame Fk.

sk Slack during frame Fk: sk := f - xk.

• The cyclic executive can execute aperiodic jobs for sk amount of time
without causing jobs to miss deadlines.

• Example:

4 8 12 16 200 1.5 0.5 2.0

4 9.5 10.5

CPSC-663: Real-Time Systems Clock-Driven Scheduling

5

Sporadic Jobs

• Reminder: Sporadic jobs have hard deadlines; the release time and the
execution time are not known a priori.
Worst-case execution time known when job is released.

• Need acceptance test:
J(d,e)

Fc-1 Fc Fc+1 Fl Fl+1

sc sc+1 sl
d

∑
=

=
l

ci
islcS),(: Total amount of slack in Frames Fc, …, Fl.

• Acceptance Test: IF S(c,l) < e THEN
 reject job;
ELSE
 accept job;
 schedule execution;
END;

how?!

Scheduling of Accepted Jobs

• Static scheduling:
– Schedule as large a slice of the accepted job as possible in the current

frame.

– Schedule remaining portions as late as possible.
• Mechanism:

– Append slices of accepted job to list of periodic-task slices in frames
where they are scheduled.

• Problem: Early commit.

• Alternatives:
– Rescheduling upon arrival.
– Priority-driven scheduling of sporadic jobs.

CPSC-663: Real-Time Systems Clock-Driven Scheduling

6

EDF-Scheduling of Accepted Jobs

...

T1

T2

T3

TN

priority
queue

aperiodic

processor
reject

acceptance
test

periodic
tasks

Acceptance Test for EDF-Scheduled Sporadic Jobs

• Sporadic Job J with deadline d arrives:
• Test 1: Test whether current amount of slack before d is enough to

accommodate J.
If not, reject!

• Test 2: Test whether sporadic jobs still in system with deadlines
after d will miss deadline if J is accepted.
If yes, reject!

• Accept!

• (*) Define S(Ji) : Amount of slack up to time di after Ji has been
scheduled.

• (**) Update all S(Ji) with di > d , that is,

eJSJSddi iii −=>∀)()(: such that

CPSC-663: Real-Time Systems Clock-Driven Scheduling

7

Pros and Cons of Clock-Driven Scheduling

• Pros:
– Conceptual simplicity

– Timing constraints can be checked and enforced at frame boundaries.
– Preemption cost can be kept small by having appropriate frame sizes.
– Easy to validate: Execution times of slices known a priori.

• Cons:
– Difficult to maintain.

– Does not allow to integrate hard and soft deadlines.

