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Network Calculus:

• Reference Material:
J.-Y. LeBoudec and Patrick Thiran: “Network Calculus: A Theory of 
Deterministic Queuing Systems for the Internet”, Springer Verlag Lecture 
Notes in Computer Science No. 2050.

• Network Calculus as system theory for computer networks.

• Some mathematical background

• Arrival Curves

• Service Curves

• Network Calculus Basics

Simple Electronic Circuit: RC Cell

• Output y(t) of this circuit is convolution of input x(t) and impulse response 
h(t) of circuit.

• Impuls response: 

• Output: 
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Greedy Shaper

• A shaper forces an input traffic flow x(t) to have an output y(t) which adheres 
to an envelope σ.

• The output function y(t) can be derived as follows:

• Other analogies apply as well (commutativity and associativity), which allow 
to extend this analysis to large-scale systems.

• There are significant differences, though!
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Min-Plus Calculus: Infimum vs. Minimum

• Let S be nonempty subset of R.

Definition [Infimum]
inf(S) = (M s.t.  s ≥ M ∀ s ∈ S)
inf(ø) = +∞

Definition [Minimum]
min(S) = ( M ∈ S s.t.  s ≥ M ∀ s ∈ S)

• Notation: ^ denotes infimum (e.g. a ^ b = min{a,b})
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The Dioid (R ∪ {+∞}, ^, +)

• Conventional (“plus-times”) algebra operates on algebraic structure (R,+,*).
• Min-plus algebra replaces operations:

– “addition” becomes “computation of infimum”
– “multiplication” becomes “addition”

• Resulting algebraic structure becomes (R ∪ {+∞}, ^, +)

• Example: 
– Conventional algebra: (3+4) * 5 = (3*5) + (4*5) = 15 + 20
– min-plus algebra: (3^4) + 5 = (3 + 5) ^ (4 + 5) = 8 ^ 9 = 8

• (Closure of ^) For all a,b ∈ R ∪ {+∞}, a ^ b ∈ R ∪ {+∞}
• (Associativity of ^) For all a,b,c ∈ R ∪ {+∞}, (a^b)^c=a^(b^c)
• (Existence of a zero element of ^) There is some e ∈ R ∪ {+∞}, such that 

for all a ∈ R ∪ {+∞}, a ^ e = a.
• (Idempotency of ^) For all a ∈ R ∪ {+∞}, a ^ a = a.
• (Commutativity of ^) For all a,b ∈ R ∪ {+∞}, a ^ b = b ^ a.
• (Closure of +) For all a,b ∈ R ∪ {+∞}, a + b ∈ R ∪ {+∞}.
• (Zero element of ^ is absorbing for +) For all a ∈ R ∪ {+∞}, 

a + e = e = e + a.
• (Existence of neutral element for +) There is some u ∈ R ∪ {+∞} such 

that for all a ∈ R ∪ {+∞}, a + u = a = u + a.
• (Distributivity of + with respect to ^) For all a,b,c ∈ R ∪ {+∞}, 

(a ^ b) + c = (a + c) ^ (b + c) = c + (a ^ b)

Properties of (R ∪ {+∞}, ^, +)
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Wide-Sense Increasing Functions

Definition [wide-sense increasing]
A function is wide-sense increasing iff f(s) ≤ f(t) for all s ≤ t.

• Define G as the set of non-negative wide-sense increasing functions.
• Define F as the set of non-negative wide-sense increasing functions with 

f(t) = 0 for t < 0.

• Operations on functions:
(f + g)(t) = f(t) + g(t)
(f ^ g)(t) = f(t) ^ g(t)

Wide-Sense Increasing Functions

• Peak rate function λR:
“Rate” R

• Burst delay function δT:
“Delay” T
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Wide-Sense Increasing Functions (2)

• Rate latency function βR,T:
“Rate” R , “Delay” T

• Affine functions γr,b:
“Rate” r, “Burst” b
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Wide-Sense Increasing Functions (3)

• Step function υT:

• Staircase function uT,τ:
“Interval” T, “Tolerance” τ
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Wide-Sense Increasing Functions (4)

• More general functions in F can be constructed by combining basic 
functions.

• Example 1: r1>r2>...>rI and b1<b2<...<bI

• Example 2:
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Pseudo-Inverse of Wide-Sense Increasing Functions

Definition [Pseudo-inverse]
Let f be a function of F. The pseudo-inverse of f is the function
f-1(x) = inf{t such that f(t) ≥ x}.

• Examples:

λR
-1 = λ1/R

δT
-1 = δ0 ^ T

βR,T
-1 = γ1/R,T

γr,b
-1 = β1/r,b
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Properties of Pseudo-Inverse

• (Closure)

• (Pseudo-inversion) We have that 

• (Equivalent definition)
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Min-Plus Convolution

• Integral of function f(t) ( f(t) = 0 for t ≤ 0 ) in conventional algebra:

• “Integral” for same function f(t) in min-plus algebra:

• Convolution of two functions f(t) and g(t) that are zero for t < 0 in 
conventional algebra:

Definition [Min-plus convolution]
Let f and g be two functions of F. The min-plus convolution of f and g is the 
function 
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Min-Plus Convolution: Example 1

• Compute (γr,b⊗ βR,T)(t)
• Case 1: 0 ≤ t ≤ T

Case 2: t > T
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Min-Plus Convolution: Example 1 (2)

(γr,b⊗ βR,T)(t)
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Min-Plus Convolution: Example 2

δT ⊗ λR =  ?
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Models for Data Flow

• Consider system S: receives input data, and delivers data after a variable 
delay.

• R(t) is cumulative input function at time t.
• R*(t) is cumulative output function at time t.

Definition [Backlog]
The backlog at time t is R(t)-R*(t).

Definition [Virtual Delay]
The virtual delay at time t is d(t) = inf{τ ≥ 0 : R(t) ≤ R*(t + τ)}

S
R(t) R*(t)
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Virtual Delay

d(t) = inf{τ ≥ 0 : R(t) ≤ R*(t + τ)}

• If input and output are continuous
R*(t + d(t)) = R(t) (*)

d(t) is smallest value satisfying (*)

R*(t)
R(t)

t1 t2

Arrival Curves

Definition  [Arrival Curve α(.)α(.)α(.)α(.)]
Given a wide-sense increasing function α(.) defined for t ≥ 0 (i.e. α(.) ∈ F) 
we say that a flow R is constrained by α(.) iff for all s ≤ t:

R(t) – R(s) ≤ α(t – s).

• “R has α(.) as arrival curve.”
• “R is bounded by α(.).”
• “R is α-smooth.”

• Note:
– α(.) is in the interval-domain.
– for all s ≥ 0 and I ≥ 0,    R(s + I) – R(s) ≤ α(I).
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Arrival Curves (2)

α(t)

time

bits

time t

bits

Example: Affine Arrival Curve γr,b

• α(t) = rt Flow is peak-rate limited. For example when physical bit rate 
is limited.

• α(t) = b Maximum number of bits ever sent is at most b.

• α(t) = rt + b Leaky bucket with rate r and burst tolerance b.

• A leaky bucket constrains the arrival to the affine arrival curve γr,b = rt + b.
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Example: Staircase Function uT,τ

Definition [Generic Cell Rate Algorithm GCRA(T,ττττ)]
The Generic Cell Rate Algorithm (GCRA) with parameters (T,τ) is used with 
fixed size packets, called cells and defines conformant cells as follows: It 
takes as input a cell arrival time t and returns result. It has an internal 
(static) variable tat (theoretical arrival time).
– initially, tat = 0

– when a cell arrives at time t, then
if (t < tat – tau)

result = NON-CONFORMANT

else {

tat = max(t, tat) + T;

result = CONFORMANT;

}

• For cells of size k, GCRA(T,τ) constrains flows to the staircase arrival 
function k uT,τ(.).

Equivalence of Leaky Bucket and GCRA

For a flow with packets of constant size δ, satisfying the GCRA(T,τ) is 
equivalent to satisfying a leaky bucket controller with rate r and burst 
tolerance b given by:

b = (τ/T + 1) δ and      r = δ / T

Applications to ATM and Intserv:
• Constant Bit Rate (CBR) in ATM:  

– Single GCRA controller with parameters T (ideal cell interval) and τ
(cell delay variation tolerance).

• Variable Bit Rate (VBR) in ATM:
– Two GCRA controllers.

• Intserv: T-SPEC (p,M,r,b) with peak rate p, maximum packet size M, 
sustainable rate r, and burst tolerance b.

α(t) = min(M + pt, rt + b)
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Sub-Additivity

Definition [Sub-additive function]
Let f be a function of F. Then f is sub-additive iff 

f(t + s) ≤ f(t) + f(s) for all s, t ≥ 0  .

• Notes:
– If f(0) = 0, this is equivalent to imposing that f = f ⊗ f .
– Concave functions passing through origin are sub-additive.
– While concavity and convexity are simple to check visually, sub-

additivity is not.

R

RT

T

βR,T(t)+K’K’

R

RT

T

βR,T(t)+K’’

K’’

Sub-Additive Closure

Definition [Sub-additive closure]
Let f be a function of F. Denote f(n) the function obtained by repeating (n-1)
convolutions of f with itself.  By convention, f(0)=δ0, so that f(1) = f, 
f(2) = f ⊗ f, etc. Then the sub-additive closure of f, denoted by f∞, is defined 
by

f∞ = δ0 ^ f ^ (f ⊗ f) ^ (f ⊗ f ⊗ f) ^ ... = infn≥0{f(n)}

• The sub-additive closure is the largest sub-additive function smaller than f
and zero in t = 0.



CPSC-663: Real-Time Systems Network Calculus

14

Sub-Additive Closure: Example

R
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Sub-Additivity and Arrival Curves

Theorem: [Reduction of Arrival Curve to a Sub-Additive One]
Saying that a flow is constrained by a wide-sense increasing funtion α(.) is 
equivalent to saying that it is constrained by the sub-additive closure α∞(.).

Lemma: A flow R is constrained by arrival curve α iff R ≤ R ⊗ α .

Lemma: If α1 and α2 are arrival curves for a flow R, then so is α1 ⊗ α 2.
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Min-Plus Deconvolution and Traffic Envelopes

Definition [Min-Plus Deconvolution]
Let f and g be two functions of F. The min-plus deconvolution of f by g is 
the function 

(f ∅ g)(t) = supu≥0{f(t + u) – g(u)}.

Definition [Minimum Arrival Curve – or Envelope]
The envelope of a flow R is defined by R ∅ R.

By definition, we have (R ∅ R)(t) = supv≥0{R(t + v) – R(v)}.

Envelopes: Examples

( Figures from J.-Y. LeBoudec and Patrick Thiran: “Network Calculus: A Theory of Deterministic Queuing Systems for the Internet”, 
Springer Verlag Lecture Notes in Computer Science )
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Service Curves

Example 1: Generalized Processor Sharing (GPS)

• During any busy period (flow is backlogged) of length t, flow receives at 
least rt amount of service.

• Input flow R(t), output flow R*(t), with t0 being the beginning of busy period 
for flow.

R*(t) – R*(t0) ≥ r(t – t0)
• At time t0, the backlog of flow is 0:

R(t0) – R*(t0) = 0
• Therefore: 

R*(t) – R(t0) ≥ r(t – t0)
• So:

R*(t) ≥ inf0≤s≤t[R(s) + r(t – s)]      ⇒ R* ≥ R ⊗ γ r,0

Service Curves

Example 2:  Guaranteed-Delay Server
• Maximum delay for the bits of given flow R is bounded by some fixed value 

T, with bits of same flow served in FIFO order.
d(t) ≤ T ⇔ R*(t + T) ≥ R(t)

• Can be re-written
R*(s) ≥ R(s – T)    for all s ≥ T

• R(s – T) can be re-written using “impulse function” δT:
(R ⊗ δT)(t) = R(t – T) 

• Maximum delay condition can be formulated as 
R* ≥ R ⊗ δT
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Service Curve: Definition

The output R* must be above R ⊗ β, which is the lower envelope
of all curves t → R(t0) + β(t – t0).

Definition [Service Curve]
Consider a system S and a flow through S with input and output function 
R and R*. We say that S offers to the flow a service curve β iff β ∈ F and 
R* ≥ R ⊗ β.

( Figures from J.-Y. LeBoudec and Patrick Thiran: “Network Calculus: A Theory of Deterministic Queuing Systems for the Internet”, 
Springer Verlag Lecture Notes in Computer Science )

Service Curves: Non-Preemptive Priority Node

• Let s be the beginning of busy period for high-priority traffic.
• Let lL

max be the maximum low-priority packet size.

• High-priority traffic: 
• HP traffic can be blocked by a low-priority packet.

RH*(t) – RH*(s) ≥ C(t – s) – lL
max

• By definition of s: RH*(s) = RH(s)
RH*(t) ≥ RH(s) + C(t – s) – lL

max

RH*(t) ≥ RH(s) + max{0, C(t – s) – lL
max}

RH(t)
High priority

R*H(t)

R*L(t)
rate CRL(t)

Low priority

rate-latency function with rate C and latency lL
max/C
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Service Curves: Non-Preemptive Priority Node (2)

• Low-Priority Traffic:
• HP traffic is constrained by arrival function αH(.).
• Let s’ be beginning of server busy period (note that s’ ≤ s).
• At time s’, backlogs for both flows are empty: 

RH*(s’) = RH(s’)    and    RL*(s’) = RL(s’)
• Over (s’, t], the output is C(t – s’):

RL*(t) – RL*(s’) = C(t – s’) – [RH*(t) – RH*(s’)]
⇒ RH*(t) – RH*(s’) = RH*(t) – RH(s’) ≤ RH(t) – RH(s’) ≤ αH(t – s’)

• RH*(t) – RH*(s’) ≥ 0
⇒ RL*(t) – RL(s’) = RL*(t) – RL*(s’) ≥ max{0, C(t – s’) - αH(t – s’)}

Network Calculus Basics: Backlog Bound

Theorem [Backlog Bound]
Assume a flow, constrained by arrival curve α, traverses a system that offers 
a service curve β. The backlog R(t) – R*(t) for all t satisfies:

R(t) – R*(t) ≤ sups≥0{α(s) – β(s)} = (α ∅ β)(0) .
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Network Calculus Basics: Delay Bound

Definition [Horizontal Deviation]
Let f and g be two functions of F. The horizontal 
deviation is defined as

h(f,g) = supt≥0{inf{d ≥ 0 such that f(t) ≤ g(t + d)}}.

f(t)

g(t)
h(f,g)

Horizontal deviation can be computed using pseudo inverse:
g-1(f(t)) = inf{∆ such that g(∆) ≥ f(t)}

= inf{d ≥ 0 such that g(t + d) ≥ f(t)} + t

⇒ h(f,g) = supt≥0{g-1(f(t)) – t} = (g-1(f) ∅ λ 1)(0).

Theorem [Delay Bound]
Assume a flow, constrained by arrival curve α, traverses a system that offers a service 
curve of β. The virtual delay d(t) for all t satisfies: d(t) ≤ h(α, β).

Network Calculus Basic: Output Flow

Theorem [Output Flow]
Assume that a flow, constrained by arrival curve α, traverses a system that 
offers a service curve of β. The output flow is constrained by the arrival 
curve α* = α ∅ β.
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Network Calculus Basics: Concatenation

Theorem [Concatenation of Nodes]
Assume a flow traverses systems S1 and S2 in sequence. Assume that Si
offers a service curve of βι, i = 1,2 to the flow. Then the concatenation of the 
two systems offers a service curve of β1 ⊗ β2 to the flow.

Proof:
• Call R1 the output of node 1. This is also the input to node 2.

R1 ≥ R ⊗ β1
• and at node 2

R* ≥ R1 ⊗ β2 ≥ (R ⊗ β1) ⊗ β2 = R ⊗ (β1 ⊗ β2)

Example 1:   βR1,T1 ⊗ βR2,T2 = βmin(R1,R2),T1 + T2

Example 2: A rate-latency server can be described as βR,T = (δT ⊗ λR)(t). It can 
therefore be view as a concatenation of a guaranteed-delay node with delay T
followed by a GPS node with rate R.


