CPSC-663: Real-Time Systems Network Calculus

Network Calculus:

* Reference Material:

J.-Y. LeBoudec and Patrick Thiran: “Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet”, Springer Verlag Lecture
Notes in Computer Science No. 2050.

« Network Calculus as system theory for computer networks.

* Some mathematical background

e Arriva Curves

¢ Service Curves

* Network Calculus Basics

Simple Electronic Circuit: RC Cell

O—/NNN—T0+
(1) R — y®
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» Output y(t) of thiscircuit is convolution of input x(t) and impulse response
h(t) of circuit.

* Impuls response: h(t) = L g 50
RC
e Output: y(t) =(hOx)(t) = .[Oth(t —s)x(s)ds
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Greedy Shaper

A shaper forces an input traffic flow x(t) to have an output y(t) which adheres
to an envelope o.

The output function y(t) can be derived as follows:

y(t) = (00X = inf{o(t-9)+x(9}

Other analogies apply as well (commutativity and associativity), which allow
to extend this analysis to large-scale systems.

There are significant differences, though!

Min-Plus Calculus: Infimum vs. Minimum

Let Sbe nonempty subset of ~.

| Definition [Infimum] |

inf(§ =M st. s=M0OsOY
inf(@) = +oo

| Definition [Minimum] |

min(S)=(MOSst. s2MOsOY

Notation: ~ denotesinfimum (e.g. a” b = min{a,b})
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The Dioid (R O {+o}, », 4)

e Conventional (“plus-times’) algebra operates on algebraic structure (R, +,*%).
* Min-plus algebra replaces operations:

— “addition” becomes “computation of infimum”

— “multiplication” becomes “addition”
¢ Resulting algebraic structure becomes (R O {+o}, A, +)

* Example:
— Conventional algebra: (3+4) * 5=(3*5) + (4*5) =15+ 20
— min-plus algebra: (34)+5=(3+5"(4+5=8"9=8

Properties of (R [ {+o}, ", +)

e (Closureof M) ForalabO RO {+w},a”b 0 R O {+co}

e (Associativity of *) For all a,b,c 0 R 0 {+}, (a*b)*c=a"(b"c)

e (Existenceof a zero element of *) Thereissomee 0 R [0 { +eo}, such that
foralad R O{+x},a”e=a.

e (Idempotency of N) Forallad R O {+x},a”a=a.

e (Commutativity of ") Forall a,b 0 R O {+},a”"b=b"a.

e (Closureof +) FordlabO R O {+w},a+b O R O {+co}.

e (Zeroelement of M isabsorbing for +) For al a R O {+ow},
ateze=e+a

« (Existence of neutral element for +) Thereissomeu O /R [0 {+«} such
thatforalad R O {+w},a+u=a=u+a.

« (Distributivity of + with respect to”) For al a,b,c 0 R O {+o0},
(@rb)y+c=(a+c)r(b+c)=c+(a”"b)
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Wide-Sense Increasing Functions

Definition [wide-sense increasing] }
A function is wide-sense increasing iff f(s) < f(t) for all s<t.

» Define G asthe set of non-negative wide-sense increasing functions.

» Define F asthe set of non-negative wide-sense increasing functions with
f(t) =0fort<0.

e Operations on functions:
(f+ g)() = f(t) + g(t)
() = f(t) " a(t)

Wide-Sense Increasing Functions

Peak rate function Ag:

“Rate’ R
Rt ift>0

A () = .
0 otherwise

» Burst delay function o
“Delay” T

+oo jft>T
o, (t) = .
0 otherwise
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Wide-Sense Increasing Functions (2)

» Ratelatency function 55 1
“Rate’ R, “Delay” T

Be- (1) = {

Rt-T) ift>T
0 otherwise w

v

 Affine functions y
“Rate” r, “Burst” b

= [rD >0 l e
Vo) = 0 otherwise
b

v

Wide-Sense Increasing Functions (3)

» Step function uy:

v (t) = 1 ift>T
710 otherwise 1}

» Staircase function uy
“Interval” T, “Tolerance” 1

0 otherwise N

t+r1 . 5
uT,,(t):ﬂTl ift >0 w .

—e

L >
«—>

T T
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Wide-Sense Increasing Functions (4)

e More general functionsin F can be constructed by combining basic
functions.

o Examplel:r>r,>..>r, and b,<b,<...<b,

f1 =yr1,b, DyrQ,bQ D"‘Dyr..b. = min{yr‘.b‘}

Is<isl|

v

e Example 2:

f, =AO{Bay +RT}{B., +2RTYO... =T
=inf{g,,, +iRT} =

T 2T 3T 4T 5T

v

Pseudo-Inverse of Wide-Sense Increasing Functions

‘ Definition [Pseudo-inverse] }

Let f be afunction of F. The pseudo-inverse of f isthe function
f1(x) = inf{t such that f(t) > x}.

e Examples:
ARt = Aur
&t = @
Brrt = VirT
% = Biro
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Properties of Pseudo-Inverse

(Closure)
f*0OF and f*(0)=0

(Pseudo-inversion) We have that

fy=x = frx)<t
frx)<t = f(t)=x

(Equivalent definition)

f *(x) =sup{t such that f (t) <x}

Min-Plus Convolution

* Integral of function f(t) ( f(t) =0 for t<0) in conventional algebra
j;f (s)ds
¢ “Integra” for same function f(t) in min-plus algebra:

inf  {f(s}

sO0 suchthat Osss<t
¢ Convolution of two functions f(t) and g(t) that are zero fort< Qin

conventional algebra: )
(fOg)t)=[f(t-9+g(s)ds

Definition [Min-plus convolution] }
Let f and g be two functions of F. The min-plus convolution of f and g isthe

function (f Dg)®) =inf{f(t-9)+g(s}
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Min-Plus Convolution: Example 1

« Compute (i, Srr)(1)
e Casel:0<t<sT

(Vo O Ber)O) = infiy, (=) + Ber ()}
=inf{y,,(t-=9+0d =,,(0)+0=0
Case2:t>T
(V. B Ber)(1)
=inf{y,,(t-9)+ B, (s}
=int{y,,(t=9)+ B, (s} Oinf{ v, (t -9 + B (9 Tirf y,,(t-9)+ 5., ()}
= Oisr!IT{b+ rit-s)+¢ DTiDSfS{ b+r(t-s)+R(s-T) O{0+R(t-T)}
={b+r(t-T)} Ofp+rt—RT + inf {(R-1)3} H{RE-T)}
={b+rt-T)} I{b+rt-T)} {Rt-T)}
={b+r(t-T)} {Rt-T)}

Min-Plus Convolution: Example 1 (2)

(% s Brr)(®)
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Min-Plus Convolution: Example 2

&0 =72
(6 0A)® =inf{s, (t-9)+ (s}

Casel (0<t<T): (4, OA)() =(i)2£l{5T(t—s)+AR(s)}
=inf{0+A.(s} =0

Case2 (t>T): (5, OA)(t) =(A,08,))
= Inf {A:(t=9)+ 5, (s}
Oinf {A.(t =)+ 4. (s}
= {09+ ¢ Dinf{ 1,(-9)+9
= A (t-T) = By,

Models for Data Flow

R(®) R* (1)

« Consider system S: receives input data, and delivers data after a variable
delay.

¢ R(t) iscumulative input function at timet.

¢ R*(1) iscumulative output function at timet.

‘ Definition [Backlog] }
The backlog at timet is R(t)-R* (t).

Definition [Virtual Delay]
Thevirtual delay at timetisd(t) =inf{ 7= 0: R(t) < R*(t + 1)}
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Virtual Delay

d(t) = inf{ 7= 0: R(t) < R*(t + 1)}

R(t
R (1)

v

t t,

« If input and output are continuous
Re(t+d®))=REH (%)
d(t) is smallest value satisfying (*)

Arrival Curves

Definition [Arrival Curvea()] |

Given awide-sense increasing function a(.) definedfort =0 (i.e. a(.) O F)
we say that aflow Ris constrained by a(.) iff for all s<t:

R(t) - R(s) < a(t—79).

“Rhasa(.) asarrival curve.”
¢ “Risbounded by a(.).”
e "Risa-smooth.”

* Note:
— a(.) isintheinterval-domain.
— fordls=0and1 =20, R(s+1)=-R(s) <a(l).

10
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Arrival Curves (2)

4 bits

bits

timet

Example: Affine Arrival Curve ),

at)=rt Flow is peak-rate limited. For example when physical bit rate
islimited.

at)=b Maximum number of bits ever sent is at most b.
a(t) = rt + b Leaky bucket with rate r and burst tolerance b.

A leaky bucket constrains the arrival to the affine arrival curve y;, = rt + b.

11
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Example: Staircase Function ur,

| Definition [Generic Cell Rate Algorithm GCRA(T, 7)] |

The Generic Cell Rate Algorithm (GCRA) with parameters (T, 7) is used with
fixed size packets, called cells and defines conformant cells as follows: It
takesasinput acell arrival timet and returnsr esul t . It has an internal
(static) variablet at (theoretical arrival time).
— initidly,tat = 0
— when acell arrives at timet, then
if (t <tat — tau)
result = NON- CONFORMANT
el se {
tat = max(t, tat) + T;
result = CONFORMANT;

» For céllsof sizek, GCRA(T, 1) constrains flows to the staircase arrival
functionk u; (.).

Equivalence of Leaky Bucket and GCRA

For aflow with packets of constant size §, satisfying the GCRA(T, 1) is
equivalent to satisfying aleaky bucket controller with rater and burst
tolerance b given by:

b=(#T+1) 35 and r=0/T

Applicationsto ATM and Intserv:
¢ Constant Bit Rate (CBR) in ATM:

— Single GCRA controller with parameters T (ideal cell interval) and 7
(cell delay variation tolerance).

e Variable Bit Rate (VBR) in ATM:
— Two GCRA controllers.

e Intserv: T-SPEC (p,M,r,b) with peak rate p, maximum packet size M,
sustainable rate r, and burst tolerance b.

a(t) = min(M + pt, rt + b)

12
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Sub-Additivity

Definition [Sub-additive function] }

Let f be afunction of F. Then f is sub-additive iff
f(t + ) <f(t) + f(s) forall s,t=0 .

Notes:
— Iff(0) =0, thisisequivalent toimposingthat f=f O f .
— Concave functions passing through origin are sub-additive.

— While concavity and convexity are simple to check visually, sub-
additivity is not.

Brr()+K”

Lrr()+K

e

Sub-Additive Closure

‘ Definition [Sub-additive closur €] }

Let f be afunction of F. Denote f™ the function obtained by repeating (n-1)
convolutions of f withitself. By convention, fO= ¢, so that f(1) = f,
f(2) = f Of, etc. Then the sub-additive closure of f, denoted by f, is defined
by

fo= g A (FOR A (FOf Of) A ... = inf {fO0}

The sub-additive closure is the largest sub-additive function smaller than f
and zeroint=0.

13



CPSC-663: Real-Time Systems Network Calculus

Sub-Additive Closure: Example

Lrr(D+K =(Br1(D)+K’) w

3=

(BrrlD+K)

T 2T 3T4TS5T

Sub-Additivity and Arrival Curves

Theorem: [Reduction of Arrival Curve to a Sub-Additive One]

Saying that aflow is constrained by a wide-sense increasing funtion a(.) is
equivalent to saying that it is constrained by the sub-additive closure a*(.).

Lemma: A flow Risconstrained by arrival curve a iff R< R .

Lemma If a, and a, are arrival curvesfor aflow R, thensoisa; [ .

14
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Min-Plus Deconvolution and Traffic Envelopes

’ Definition [Min-Plus Deconvolution] }
Let f and g be two functions of F. The min-plus deconvolution of f by gis
the function

(F 0 g)(V) = supo{ f(t + u) —g(u)}-

Definition [Minimum Arrival Curve—or Envelope]}
The envelope of aflow Risdefinedby RO R.

By definition, we have (RO R)(t) = sup.o{ R(t + v) — R(V)}.

Envelopes: Examples

- HWM -
sl

( Figures from J.-Y. LeBoudec and Petrick Thiran: “Network Calculus: A Theory of Deterministic Queuing Systems for the Internet”,
Springer Verlag Lecture Notesin Computer Science )

15
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Service Curves

Example 1: Generalized Processor Sharing (GPS)

« During any busy period (flow is backlogged) of length t, flow receives at
least rt amount of service.

* Input flow R(t), output flow R*(t), with t, being the beginning of busy period
for flow.

Re(t) - R*(to) 2 r(t —ty)

e AttimetO, the backlog of flow isO:
R(t) —R*(t) =0

e Therefore:

R* (1) = R(t) 2 r(t—1t)
e SO

Re(t) 2info4[R(9) +r(t—-9] = R=2RDy ,

Service Curves

Example 2: Guaranteed-Delay Server

* Maximum delay for the bits of given flow Risbounded by some fixed value
T, with bits of same flow served in FIFO order.

dt)sT o R@Et+T)=R()
¢ Can bere-written
R*(s)=2R(s—T) forals=T

* R(s-T) can bere-written using “impulse function” J;:
(RO )(H =R(t-T)
e Maximum delay condition can be formulated as
R*>R0O 4

16
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Service Curve: Definition

( Figures from J.-Y. LeBoudec and Petrick Thiran: “Network Calculus: A Theory of Deterministic Queuing Systems for the Internet”,
Springer Verlag Lecture Notes in Computer Science)

=i
Eit} .

i 1
dmin

HiTe
—

The output R* must be above R [0 5, which is the lower envelope
of al curvest - R(t;) + At —ty).

| Definition [Service Curve] |
Consider a system Sand a flow through Swith input and output function
Rand R*. We say that S offers to the flow a service curve giff S0 F and
R*>ROL

Service Curves. Non-Preemptive Priority Node

High priority

] : R
Low priority RkL(t)

Rt —— & rate C

Let s be the beginning of busy period for high-priority traffic.
o Letlt,,, bethe maximum low-priority packet size.

Ru®

e High-priority traffic:
HP traffic can be blocked by a low-priority packet.
Ry*() =Ry*(9) 2 C(t —9) — I-
By definition of s: R,*(S) = Ry(S)
Ri*(1) 2 Ry(9) + Clt—9) — " s,
Ry*(1) 2 Ry(9) + max{0, C(t—) — 1| .}

rate-latency function with rate C and latency I+, /C

17
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Service Curves. Non-Preemptive Priority Node (2)

e Low-Priority Traffic:
» HPtrafficis constrained by arrival function a;,(.).
* Lets bebeginning of server busy period (notethat s' < ).
* Attimes, backlogs for both flows are empty:
R*(S)=Ry(s) and R*(S)=R(s)
e Over (s, ], theoutputisC(t—s'):
R*(®) ~R*(8) = Ct—8) ~[Ry*() —R*(S)]
= Ry* () ~ R*(8) = Ry*(1) —Ry(S) SR () —Ry(S) < a(t )

* R -R*(s)=20

= R*() —R.(8) =R*(t) =R *(8) 2max{0, C(t -5 - a(t—s)}

Network Calculus Basics. Backlog Bound

‘ Theorem [Backlog Bound] i

Assume aflow, constrained by arrival curve a, traverses a system that offers
aservice curve . The backlog R(t) — R*(t) for all t satisfies:

R(t) —R*(1) < supee{ a(s) = A9} = (a T H)(0) .

18
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Network Calculus Basics. Delay Bound

‘ Definition [Horizontal Deviation] }
Let f and g be two functions of F. The horizontal (t) ’

deviation is defined as
h(f,9) = sup{inf{d = 0 such that f(t) < g(t + d)}}. g(t)

Horizontal deviation can be computed using pseudo inverse:
gl(f(t)) =inf{Asuch that g(4) = f(t)}
=inf{d=0suchthat g(t + d) = f(t)} +1t

= h(f.g) = supo{ g*(f(1)) -t} = (g*() A )(0).

Theorem [Delay Bound] }

Assume aflow, constrained by arrival curve a, traverses a system that offers a service
curve of B. Thevirtual delay d(t) for all t satisfies: d(t) < h(a, f).

Network Calculus Basic: Output Flow

Theorem [Output Flow] |

\
Assume that aflow, constrained by arrival curve a, traverses a system that

offers a service curve of £. The output flow is constrained by the arrival
cuvea* = al S

19
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Network Calculus Basics: Concatenation

‘ Theorem [Concatenation of Nodes] |

!
Assume aflow traverses systems S, and S, in sequence. Assume that §

offersaservice curve of 5, i = 1,2 to the flow. Then the concatenation of the
two systems offers a service curve of S, O S, to the flow.

Proof:
e Call R, the output of node 1. Thisis also the input to node 2.
R, 2RO}
e and at node 2
R* 2R 04z2(ROAB)UL=ROMB.ULB)

Example 1: Brim O Bro12= ﬁmin(Rl,RZ),Tl +T2
Example 2: A rate-latency server can be described as ;1= (J; O Ag)(1). It can

therefore be view as a concatenation of a guaranteed-delay node with delay T
followed by a GPS node with rate R.

20



