
CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

1

Priority-Driven Scheduling of Periodic Tasks

• Priority-driven vs. clock-driven scheduling:

• Assumptions:
– tasks are periodic
– jobs are ready as soon as they are released
– preemption is allowed
– tasks are independend
– no aperiodic or sporadic tasks

• We will later:
– integrate aperiodic and sporadic tasks
– integrate resources
– etc.

tasks

cyclic schedule
executive processor

a priori!

tasks

priority queue
processorpriority-driven:

clock-driven:

Why Focus on Uniprocessor Scheduling?

• Dynamic vs. static multiprocessor scheduling:

tasks

priority queue

partn2

processors

partn3 partn4partn1

tasks

• Dynamic :

• Static :

• Poor worst-case performance of priority-driven algorithms in dynamic
environments.

• Difficulty in validating timing constraints.

local
priority queues

task
assignment

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

2

Static-Priority vs. Dynamic Priority

• Static-Priority: All jobs in task have same priority.
• example:

Rate-Monotonic: “The shorter the period, the higher the priority.”

)3,1,3(
)5,3,5(

2

1

=
=

T
T T1

T2

• Dynamic-Priority: May assign different priorities to individual jobs.
• example:

Earliest-Deadline-First: “The nearer the absolute deadline,
the higher the priority.”

T1

T2

T1 is not preempted

here we break tie

Example Algorithms

• Static-Priority:
– Rate-Monotonic (RM): “The shorter the period, the higher the priority.”

[Liu+Layland ’73]
– Deadline-Monotonic (DM): “The shorter the relative deadline, the

higher the priority.” [Leung+Whitehead ’82]

• For arbitrary relative deadlines, DM outperforms RM.

• Dynamic-Priority:
– EDF: Earliest-Deadline-First.
– LST: Least-Slack-Time-First.
– FIFO/LIFO
– etc.

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

3

Considerations about Priority-Driven Scheduling

• FIFO/LIFO do not take into account urgency of jobs.
• Static-priority assignments based on functional criticality are typically non-

optimal.
• We confine our attention to algorithms that assign priorities based on

temporal parameters.

• Def: [Schedulable Utilization]
Every set of periodic tasks with total utilization less or equal than
the schedulable utilization of an algorithm can be feasibly
scheduled by that algorithm.

• The higher the schedulable utilization, the better the algorithm.

• Schedulable utilization is always less or equal 1.0!

Schedulable Utilization of FIFO

• Result of Opinion Poll in CPSC-663 of Fall 2001:

10% 20% 30% 40% 50% 100%0%
1 2 1

6
4 4

N
um

be
r o

f V
ot

es

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

4

Schedulable Utilization of FIFO (II)

• Theorem: UFIFO = 0

• Proof:
Given any utilization level ε > 0, we can find a task set, with utilization
ε, which may not be feasibly scheduled according to FIFO.

Example task set:

ε
ε

ε

=⇒

=

=

=

U

pe

ppT

peT

12

122

111

2:
2

:

e1

e2

p1

p2

Optimality of EDF for Periodic Systems

• Theorem: A system of independent preemptable tasks with relative
deadlines equal to their periods is feasible iff their total
utilization is less or equal 1 .

• Proof: only-if: obvious
if : find algorithm that produces feasible schedule of any

system with total utilization not exceeding 1.
Try EDF.

• We show: If EDF fails to find feasible schedule, then the total utilization
must exceed 1.

• Assumptions:
– At some time t, Job Ji,c of Task Ti misses its deadline.
– WLOG: if more than one job have deadline t, break tie for Ji,c.

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

5

Optimality of EDF (cont)

• Case 1: Current period of every task begins at or after ri,c.
• Case 2: Current period of some task my start before ri,c.

• Case 1:

• Current jobs other than Ji,c
do not execute before time
t.

1

)(

>⇒
⋅=

⋅+⋅≤

 −+−<

∑

∑

≠

≠

U
Ut

p
et

p
et

e
p

t
p

ett

ik k

k

i

i

ik
k

k

k

i

ii φφ

T1

T2

Ti

ri,c ri,c+pi

Ji,c misses
deadline !

current period

Optimality of EDF (cont 2)

• Case 2: Some current periods start before ri,c.
• Notation: T: Set of all tasks.

T’: Set of tasks where current period starts before ri,c.
T-T’: Set of tasks where current period start at or after ri,c.

• tl : Last point in time before t when some current job in T’ is executed.
• No current job is executed immediately after time tl.
• Why? 1. All jobs in T’ are done.

2. Jobs in T-T’ not yet ready.

ri,c

1'φ

ri,c+piTi

T1

T2

ttl

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

6

Case 2 (cont)

• What about assumption that processor never idle?

tlforget this
part

same proof
holds for
this part Q.E.D.

1

)()()(

')'(

'

'

>⇒

−≤−+−≤

 −−+−−<−

∑

∑

−∈

−∈

U

Utt
p
ett

pi
eitt

e
p

tt
p

etttt

TTT
l

k

k
ll

k
TTT k

kl

i

iil
l

k

k

φφ

What about Static Priority?

• Static-Priority is not optimal!
• Example:

%1001)5,5.2,5(
)2,1,2(

2

2

1

1

2

1 ≤=+=

=
=

p
e

p
eUT

T

• So: Why bother with static-priority?
– simplicity
– predictability

T1

T2

J1,3 must have lower
priority than J2,1!

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

7

Unpredictability of EDF Scheduling

• Over-running jobs hold on to their priorities
• Example:

T1 = (1,2)

T2 = (1,4)

T3 = (2,8)

T1 = (1,2)

T2 = (1,4)

T3 = (2,8)
Normal Operation

T3 over-runs by a bit more than one time unit

Unpredictability of EDF Scheduling (II)

T1 = (1,2)

T2 = (1,4)

T3 = (2,8)
T3 over-runs for a bit longer....

T1 = (1,2)

T2 = (1,4)

T3 = (2,8)

The same situation using Rate-Monotonic Scheduling:
high-priority tasks are protected

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

8

Schedulability Bounds for Static-Priority

• Simply-Periodic Workloads:
Simply-Periodic: A set of tasks is simply periodic if, for every pair of

tasks, one period is multiple of other period.

• Theorem: A system of simply periodic, independent, preemptable tasks
whose relative deadlines are equal to their periods is
schedulable according to RM iff their total utilization does not
exceed 100%.

• Proof: Assume Ti misses deadline at time t.
t is integer multiple of pi.
t is also integer multiple of

=> total time to complete jobs with deadline t:

If job misses deadline, then

., ikk ppp <∀

.11 >⇒> UUi

∑∑
==

⋅=⋅=⋅ i

k k

k
i

i

k k

k

p
etUt

p
et

11

Q.E.D.

Utilization due to i
highest-priority tasks

Schedulable Utilization of Tasks with Di=pi,
Using Rate-Monotonic Algorithm

• Theorem: [Liu&Layland ‘73] A system of n independend, preemptable
periodic tasks with Di=pi can be feasibly scheduled by the RM
algorithm if its total utilization U is less or equal to

)12()(1 −= n
RM nnU

• Why not 1.0?
)5,5.2,5(
)2,1,2(

2

1
=
=

T
T

T1

T2

misses deadline !

• Proof: First, show that theorem is correct for special case where
longest period pn<2p1 (p1 = shortest period).
Will remove this restriction later.

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

9

Proof of Liu&Layland

• General idea: Find the most-difficult-to-schedule system of n tasks
among all difficult-to-schedule systems of n tasks.

• Difficult-to-schedule: Fully utilizes processor for some time interval. Any
increase in execution time would make system
unschedulable.

• Most-difficult-to-schedule: system with lowest utilization among difficult-
to-schedule systems.

• Each of the following 4 steps brings us closer to this system.

• Step 1: Identify phases of tasks in most-difficult-to-schedule
system.

System must be in-phase. (talk about this later)

Proof of Liu&Layland (cont)

• Step 2: Choose relationship between periods and execution times.
Hypothesize that parameters of MDTS system are thus
related.

• Confine attention to first period of each task.
• Tasks keep processor busy until end of period pn.

T1

T2

T3

Tn-1

Tn

p1

p2

p3

pn-1

pn

...
∑

−

=

+

−=

−=
1

1

1

2
n

k
knn

kkk

epe

ppe

call this Property AA

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

10

Proof Liu&Layland (cont)

• Step 3: Show that any set of D-T-S tasks that are not related
according to Property AA has higher utilization.

• What happens if we deviate from Property AA?

• Deviate one way: Increase execution of some high-priority task by ε:

Must reduce execution time of some other task:

εε +−=+= 1211' ppee

43421
0

11

1

1

1 '''

'

>

−=−−+=−

−=

kk

k

k

k

kk

ppp
e

p
e

p
e

p
eUU

ee
εε

ε

Proof Liu&Layland (cont)

• Deviate other way:
Reduce execution time of some high-priority tasks by ε:

Must increase execution time of some lower-priority task:

εε −−=−= 1211'' ppee

43421
0

1

2''

2''

>

−=−

+=

pp
UU

ee

k

kk
εε

ε

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

11

Proof Liu&Layland (cont)

• Step 4: Express the total utilization of the M-D-T-S task system
(which has Property AA).

• Define

• Find least upper bound on utilization: Set first derivative of U with respect to
each of gi’s to zero:

−=
−=⇒

−= ++

11

11
2: pgpe

pgpge
p

ppgi
nn

iiiii

i

in

∑∑ ∑
−

=

−

=

−

=

+
+ +

−+
+
−+=−+

−==
1

2

1

1

1
1

1
1

1

1

1

1
1 11

1121
n

i i

ii
i

n

n

i

n

i i

i
ii

i

i

g
ggg

g
gg

p
pg

p
pgg

p
eU

).12(

12

0
1)1(

)2(

/1

/)(

1

1
2

1
2

−=⇒

−=

=
+

−
+

−+
=

∂
∂

−

+

+−

n

njn
j

j

j

j

jjj

i

nU

g

g
g

g
ggg

g
U

Q.E.D.

for j=1,2,3,…,n-1

Period Ratios > 2

• We show: 1. Every D-T-S task system T with period ratio > 2
can be transformed into D-T-S task system T’ with
period ratio <= 2.

2. The total utilization of the task set decreases during the
transformation step.

• We can therefore confine search to systems with period ratio < 2.

• 1. Transformation T-T’:

• Compare utilizations:
end

while

))e(l-, e(p),e(pT
), ep(l),e(pT

lplpplT

knnnnn

kkkkk

knkk

1
)2()1(with

+→
⋅→

≥+≤<⋅∃

0)1(11

)1()1('

>−

−

⋅
=

−−
⋅

−=−+−
⋅

−+=−

k
nk

n

k

k

k

k

k

n

kn

k

k

n

n

k

k

el
ppl

p
el

pl
e

p
e

p
ele

pl
e

p
e

p
eUU

Q.E.D.

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

12

Regarding that Little Question about the Phasing...

• Definition: [Critical Instant]
[Liu&Layland] If the maximum response time of all jobs in Ti
is less than Di, then the job of Ti released in the critical instant
has the maximum response time.
[Baker] If the response time of some jobs in Ti exceeds Di,
then the response time of the job release during the critical
instant exceeds Di.

• Theorem: In a fixed-priority system where every job completes before
the next job in the same task is released, a critical instant of a
task Ti occurs when one of its jobs Ji,c is released at the same
time with a job of every higher-priority task.

Proof (informal)

• Assume: Theorem holds for k<i.
• WLOG: , and we look at Ji,1:

• Observation: The completion time of higher-priority jobs is independent of
the release time of Ji,1.

• Therefore: The sooner Ji,1 is released, the longer it has to wait until it is
completed.

Q.E.D.

0: =<∀ kik φ

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

13

Proof 2 (less informal)

• WLOG:

• Observation: Need only consider time processor is busy executing jobs in
T1,T2, …, Ti-1 before φi.
If processor idle or executes lower-priority jobs, ignore that
portion of schedule and redefine the φk’s.

•

• so:

• and:

{ } 0,...,1min == ikkφ

[]
execution.for ready become in jobs

p
-R

 of totala , interval During
k

kii,1
1,

k

iik

T

R

 +
+

φφ
φφ

∑
−

=

 −+
+=+

1

1

1,
1,

i

k
k

k

kii
iii e

p
R

eR
φφ

φ
Ri,1 is smallest solution, if such a
solution exists.

i

i

k
k

k

kii
ii e

p
R

eR φ
φφ

−

 −+
+= ∑

−

=

1

1

1,
1,

Why Utilization-Based Tests?

• If no parameter ever varies, we could use simulation.
• But:

– Execution times may be smaller than ei

– Interrelease times may vary.

• Tests are still robust.

• Useful as methodology to define execution times or periods.

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

14

Optimality of Deadline-Monotonic, Rate-Monotonic

• Theorem: If a task set can be feasibly scheduled by some static-priority
algorithm, it can be feasibly scheduled by DM.

• Proof:
– Assume: A feasible schedule exists for a task set T. The priority

assignment is T1, T2, …, Tn.
For some k, we have Dk > Dk+1.

– We show that we can swap the priority of Tk and Tk+1 and the resulting
schedule remains feasible.

pk

pk+1

Dk

Dk+1

Tk+1

Tk

tl

Time-Demand Analysis

• Compute total demand on processor time of job released at a critical instant
and by higher-priority tasks as function of time from the critical instant.

• Check whether demand can be met before deadline.
• Determine whether Ti is schedulable:

– Focus on a job in Ti, suppose release time is critical instant of Ti:
wi(t): Processor-time demand of this job and all higher-priority jobs

released in (t0, t):

k

i

k k
ii e

p
tetw ∑

−

=

+=
1

1

)(

t D p w t ti i i1 1 1≤ ≤ ≤: ()

• This job in Ti meets its deadline if, for some

• If this does not hold, job cannot meet its deadline, and system of tasks is not
schedulabe by given static-priority algorithm.

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

15

Example

w(t)

t2 4 6 8 10 12 14

w1(t)

)5.0,9(
)25.1,7(
)5.1,5(
)1,3(

4

3

2

1

=
=
=
=

T
T
T
T

Example

w(t)

t2 4 6 8 10 12 14

w1(t)

)5.0,9(
)25.1,7(
)5.1,5(
)1,3(

4

3

2

1

=
=
=
=

T
T
T
T

w2(t)

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

16

Example

w(t)

t2 4 6 8 10 12 14

w1(t)

)5.0,9(
)25.1,7(
)5.1,5(
)1,3(

4

3

2

1

=
=
=
=

T
T
T
T

w2(t)

w3(t)

Example

w(t)

t2 4 6 8 10 12 14

w1(t)

)5.0,9(
)25.1,7(
)5.1,5(
)1,3(

4

3

2

1

=
=
=
=

T
T
T
T

w2(t)

w3(t)
w4(t)

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

17

Practical Factors

• Non-Preemptable Portions (*)

• Self-Suspension of Jobs (*)

• Context Switches (*)

• Insufficient Priority Resolutions (Limited Number of Distinct Priorities)

• Time-Driven Implementation of Scheduler (Tick Scheduling)

• Varying Priorities in Fixed-Priority Systems

Practical Factors I: Non-Preemptability

• Jobs, or portions thereof, may be non-preemptable.

• Definition: [non-preemptable portion]
ρi : largest non-preemptable portion of jobs in Ti.

• Definition: [blocked job]
A job is said to be blocked if it is prevented from
executing by lower-priority job. (priority-inversion)

• When testing schedulability of a task Ti, we must consider
– higher-priority tasks
and
– non-preemptable portions of lower-priority tasks

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

18

Analysis with Non-Preemptable Portions

• Definition: [blocking time]
The blocking time bi of Task Ti is the longest time by which
any job of Ti can be blocked by lower-priority jobs:

• Time-demand function with blocking:

• Utilization bounds with blocking:
test one task at a time:

knkiib ρ
≤≤+

=
1

max

k

i

k k
iii e

p
tbetw ∑

−

=

++=

1

1
)(

)(...
12

2

1

1 iU
p
b

p
e

p
be

p
e

p
e

RM
i

i
i

k k

k

i

ii ≤+=++++ ∑
=

Non-Preemptability: Example

)2,9(
)5.1,5(
)1,4(

3

2

1

=
=
=

T
T
T w(t)

t
2 4 6 8 10

w1(t)

w2(t)

w3(t)

tim
e-

de
m

an
d

fu
nc

tio
n

w
ith

ou
t b

lo
ck

in
g

w(t)

t
2 4 6

tim
e-

de
m

an
d

fu
nc

tio
n

w
ith

 b
lo

ck
in

g
(T

3
no

n-
pr

ee
m

pt
ab

le
)

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

19

Practical Factors II: Self-Suspension

• Definition: [Self-Suspension]
Self-suspension of a job occurs when the job waits for an
external operation to complete (RPC, I/O operation).

• Assumption: We know the maximum length of external operation; i.e., the
duration of self-suspension is bounded.

• Example:

• Analysis: bi
SS : Blocking time of Ti due to self-suspension.

T2 = (φ2=3,p2=7,e2=2.0)

T1 = (φ1=0,p1=4,e1=2.5)

self-suspension!

) of timesuspension-self max. min
 of timesuspension-self max.

1

1 k

i-

k k

i
SS
i

T,(e
Tb

∑ =
+

=

Self-Suspension with Non-Preemptable Portions

• Whenever job self-suspends, it loses the processor.
• When tries to re-acquire processor, it may be blocked by tasks in non-

preemptable portions.

• Analysis: bNP
i: Blocking time due to non-preemptable portions

Ki: Max. number of self-suspensions
bi: Total blocking time

bi = bSS
i + (Ki + 1) bNP

i

CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

20

Practical Factors III: Context Switches

• Definition: [Job-level fixed priority assignment]
In a job-level fixed priority assigment, each job is given a
fixed priority for its entire execution.

• Case I: No self-suspension
– In a job-level fixed-priority system, each job preempts at most one other

job.
– Each job therefore causes at most two context switches
– Therefore: Add the context switch time twice to the execution time of

job: ei = ei + 2 CS
• Case II: Self-suspensions can occur

– Each job suffers two more context switches each time it self-suspends
– Therefore: Add more context switch times appropriately:

ei = ei + 2 (Ki + 1) CS

