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Priority-Driven Scheduling of Periodic Tasks

• Priority-driven vs. clock-driven scheduling:

• Assumptions:
– tasks are periodic
– jobs are ready as soon as they are released
– preemption is allowed
– tasks are independend
– no aperiodic or sporadic tasks

• We will later:
– integrate aperiodic and sporadic tasks
– integrate resources
– etc.
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tasks

priority queue
processorpriority-driven:

clock-driven:

Why Focus on Uniprocessor Scheduling?

• Dynamic vs. static multiprocessor scheduling:

tasks

priority queue

partn2

processors

partn3 partn4partn1

tasks

• Dynamic :

• Static :

• Poor worst-case  performance of priority-driven algorithms in dynamic 
environments.

• Difficulty in validating timing constraints.

local
priority queues

task
assignment
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Static-Priority vs. Dynamic Priority

• Static-Priority: All jobs in task have same priority.
• example: 

Rate-Monotonic: “The shorter the period, the higher the priority.”
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• Dynamic-Priority: May assign different priorities to individual jobs.
• example: 

Earliest-Deadline-First: “The nearer the absolute deadline, 
the higher the priority.”

T1

T2

T1 is not preempted

here we break tie

Example Algorithms

• Static-Priority:
– Rate-Monotonic (RM): “The shorter the period, the higher the priority.” 

[Liu+Layland ’73]
– Deadline-Monotonic (DM): “The shorter the relative deadline, the 

higher the priority.” [Leung+Whitehead ’82]

• For arbitrary relative deadlines, DM outperforms RM.

• Dynamic-Priority:
– EDF: Earliest-Deadline-First.
– LST: Least-Slack-Time-First.
– FIFO/LIFO
– etc.
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Considerations about Priority-Driven Scheduling

• FIFO/LIFO do not take into account urgency of jobs.
• Static-priority assignments based on functional criticality are typically non-

optimal.
• We confine our attention to algorithms that assign priorities based on 

temporal parameters.

• Def:   [Schedulable Utilization]
Every set of periodic tasks with total utilization less or equal than 
the schedulable utilization of an algorithm can be feasibly 
scheduled by that algorithm.

• The higher the schedulable utilization, the better the algorithm.

• Schedulable utilization is always less or equal 1.0!

Schedulable Utilization of FIFO

• Result of Opinion Poll in CPSC-663 of Fall 2001:
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Schedulable Utilization of FIFO (II)

• Theorem: UFIFO = 0

• Proof:
Given any utilization level ε > 0, we can find a task set, with utilization 
ε, which may not be feasibly scheduled according to FIFO.

Example task set:
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Optimality of EDF for Periodic Systems

• Theorem:  A system of independent preemptable tasks with relative 
deadlines equal to their periods is feasible iff their total 
utilization is less or equal 1 .

• Proof: only-if: obvious
if : find algorithm that produces feasible schedule of any 

system with total utilization not exceeding 1.
Try EDF.

• We show: If EDF fails to find feasible schedule, then the total utilization 
must exceed 1.

• Assumptions:
– At some time t, Job Ji,c of Task Ti misses its deadline.
– WLOG: if more than one job have deadline t, break tie for Ji,c.
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Optimality of EDF (cont)

• Case 1: Current period of every task begins at or after ri,c.
• Case 2: Current period of some task my start before ri,c.

• Case 1:

• Current jobs other than Ji,c
do not execute before time 
t.
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Optimality of EDF (cont 2)

• Case 2: Some current periods start before ri,c.
• Notation: T: Set of all tasks.

T’: Set of tasks where current period starts before ri,c.
T-T’: Set of tasks where current period start at or after ri,c.

• tl : Last point in time before t when some current job in T’ is executed.
• No current job is executed immediately after time tl.
• Why? 1. All jobs in T’ are done.

2. Jobs in T-T’ not yet ready.
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Case 2 (cont)

• What about assumption that processor never idle?

tlforget this
part

same proof
holds for
this part Q.E.D.
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What about Static Priority?

• Static-Priority is not optimal!
• Example:
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• So: Why bother with static-priority?
– simplicity
– predictability

T1

T2

J1,3 must have lower 
priority than J2,1!
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Unpredictability of EDF Scheduling

• Over-running jobs hold on to their priorities
• Example:

T1 = (1,2)

T2 = (1,4)

T3 = (2,8)

T1 = (1,2)

T2 = (1,4)

T3 = (2,8)
Normal Operation

T3 over-runs by a bit more than one time unit

Unpredictability of EDF Scheduling (II)

T1 = (1,2)

T2 = (1,4)

T3 = (2,8)
T3 over-runs for a bit longer....

T1 = (1,2)

T2 = (1,4)

T3 = (2,8)

The same situation using Rate-Monotonic Scheduling:
high-priority tasks are protected
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Schedulability Bounds for Static-Priority

• Simply-Periodic Workloads:
Simply-Periodic: A set of tasks is simply periodic if, for every pair of 

tasks, one period is multiple of other period.

• Theorem: A system of simply periodic, independent, preemptable tasks 
whose relative deadlines are equal to their periods is 
schedulable according to RM iff their total utilization does not 
exceed 100%.

• Proof: Assume Ti misses deadline at time t.
t is integer multiple of pi. 
t is also integer multiple of

=> total time to complete jobs with deadline t:

If job misses deadline, then  
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Schedulable Utilization of Tasks with Di=pi, 
Using Rate-Monotonic Algorithm

• Theorem: [Liu&Layland ‘73] A system of n independend, preemptable
periodic tasks with Di=pi can be feasibly scheduled by the RM 
algorithm if its total utilization U is less or equal to

)12()( 1 −= n
RM nnU
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misses deadline !

• Proof: First, show that theorem is correct for special case where 
longest period pn<2p1 (p1 = shortest period).  
Will remove this restriction later.
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Proof of Liu&Layland

• General idea:  Find the most-difficult-to-schedule system of n tasks 
among all difficult-to-schedule systems of n tasks.

• Difficult-to-schedule: Fully utilizes processor for some time interval.  Any 
increase in execution time would make system
unschedulable.

• Most-difficult-to-schedule: system with lowest utilization among difficult-
to-schedule systems.

• Each of the following 4 steps brings us closer to this system.

• Step 1: Identify phases of tasks in most-difficult-to-schedule 
system.

System must be in-phase. (talk about this later)

Proof of Liu&Layland (cont)

• Step 2: Choose relationship between periods and execution times. 
Hypothesize that parameters of MDTS system are thus 
related.

• Confine attention to first period of each task.
• Tasks keep processor busy until end of period pn.
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Proof Liu&Layland (cont)

• Step 3: Show that any set of D-T-S tasks that are not related 
according to Property AA has higher utilization.

• What happens if we deviate from Property AA?

• Deviate one way: Increase execution of some high-priority task by ε:

Must reduce execution time of some other task:
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Proof Liu&Layland (cont)

• Deviate other way:
Reduce execution time of some high-priority tasks by ε:

Must increase execution time of some lower-priority task:
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Proof Liu&Layland (cont)

• Step 4: Express the total utilization of the M-D-T-S task system 
(which has Property AA).

• Define

• Find least upper bound on utilization: Set first derivative of U with respect to 
each of gi’s to zero:
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for j=1,2,3,…,n-1

Period Ratios > 2

• We show: 1. Every D-T-S task system T with period ratio > 2 
can be transformed into D-T-S task system T’ with 
period ratio <= 2.

2. The total utilization of the task set decreases during the 
transformation step.

• We can therefore confine search to systems with period ratio < 2.

• 1. Transformation T-T’:

• Compare utilizations:
end
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Regarding that Little Question about the Phasing...

• Definition: [Critical Instant]
[Liu&Layland] If the maximum response time of all jobs in Ti
is less than Di, then the job of Ti released in the critical instant 
has the maximum response time.
[Baker]  If the response time of some jobs in Ti exceeds Di, 
then the response time of the job release during the critical 
instant exceeds Di.

• Theorem: In a fixed-priority system where every job completes before 
the next job in the same task is released, a critical instant of a 
task Ti occurs when one of its jobs Ji,c is released at the same 
time with a job of every higher-priority task.

Proof (informal)

• Assume: Theorem holds for k<i.
• WLOG: , and we look at Ji,1:

• Observation: The completion time of higher-priority jobs is independent of 
the release time of Ji,1.

• Therefore: The sooner Ji,1 is released, the longer it has to wait until it is 
completed.

Q.E.D.

0: =<∀ kik φ
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Proof 2 (less informal)

• WLOG:

• Observation: Need only consider time processor is busy executing jobs in 
T1,T2, …, Ti-1 before φi.
If processor idle or executes lower-priority jobs, ignore that 
portion of schedule and redefine the φk’s.

•

• so:

• and:
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Why Utilization-Based Tests?

• If no parameter ever varies, we could use simulation.
• But:

– Execution times may be smaller than ei

– Interrelease times may vary.

• Tests are still robust.

• Useful as methodology to define execution times or periods.
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Optimality of Deadline-Monotonic, Rate-Monotonic

• Theorem: If a task set can be feasibly scheduled by some static-priority 
algorithm, it can be feasibly scheduled by DM.

• Proof:
– Assume: A feasible schedule exists for a task set T.  The priority 

assignment is T1, T2, …, Tn.
For some k, we have Dk > Dk+1.

– We show that we can swap the priority of Tk and Tk+1 and the resulting 
schedule remains feasible.

pk

pk+1

Dk

Dk+1

Tk+1

Tk

tl

Time-Demand Analysis

• Compute total demand on processor time of job released at a critical instant 
and by higher-priority tasks as function of time from the critical instant.

• Check whether demand can be met before deadline.
• Determine whether Ti is schedulable:

– Focus on a job in Ti, suppose release time is critical instant of Ti:
wi(t): Processor-time demand of this job and all higher-priority jobs 

released in (t0, t):
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• This job in Ti meets its deadline if, for some 

• If this does not hold, job cannot meet its deadline, and system of tasks is not 
schedulabe by given static-priority algorithm.



CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

15

Example

w(t)
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Example

w(t)

t2 4 6 8 10 12 14
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Practical Factors

• Non-Preemptable Portions (*)

• Self-Suspension of Jobs (*)

• Context Switches (*)

• Insufficient Priority Resolutions (Limited Number of Distinct Priorities)

• Time-Driven Implementation of Scheduler (Tick Scheduling)

• Varying Priorities in Fixed-Priority Systems

Practical Factors I: Non-Preemptability

• Jobs, or portions thereof, may be non-preemptable.

• Definition: [non-preemptable portion]
ρi : largest non-preemptable portion of jobs in Ti.

• Definition: [blocked job]
A job is said to be blocked if it is prevented from 
executing by lower-priority job. (priority-inversion)

• When testing schedulability of a task Ti, we must consider 
– higher-priority tasks
and
– non-preemptable portions of lower-priority tasks 



CPSC-663: Real-Time Systems Priority-Driven Scheduling 1

18

Analysis with Non-Preemptable Portions

• Definition: [blocking time]
The blocking time bi of Task Ti is the longest time by which 
any job of Ti can be blocked by lower-priority jobs:

• Time-demand function with blocking:

• Utilization bounds with blocking:
test one task at a time:
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Practical Factors II: Self-Suspension

• Definition: [Self-Suspension]
Self-suspension of a job occurs when the job waits for an 
external operation to complete (RPC, I/O operation).

• Assumption: We know the maximum length of external operation; i.e., the 
duration of self-suspension is bounded.

• Example:

• Analysis: bi
SS : Blocking time of Ti due to self-suspension.

T2 = (φ2=3,p2=7,e2=2.0)

T1 = (φ1=0,p1=4,e1=2.5)

self-suspension!

) of  timesuspension-self max. min
 of  timesuspension-self max.
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Self-Suspension with Non-Preemptable Portions

• Whenever job self-suspends, it loses the processor.
• When tries to re-acquire processor, it may be blocked by tasks in non-

preemptable portions.

• Analysis: bNP
i: Blocking time due to non-preemptable portions

Ki: Max. number of self-suspensions
bi: Total blocking time

bi = bSS
i + (Ki + 1) bNP

i
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Practical Factors III: Context Switches

• Definition: [Job-level fixed priority assignment]
In a job-level fixed priority assigment, each job is given a 
fixed priority for its entire execution.

• Case I: No self-suspension
– In a job-level fixed-priority system, each job preempts at most one other 

job.
– Each job therefore causes at most two context switches
– Therefore: Add the context switch time twice to the execution time of 

job: ei = ei + 2 CS
• Case II: Self-suspensions can occur

– Each job suffers two more context switches each time it self-suspends
– Therefore: Add more context switch times appropriately:

ei = ei + 2 (Ki + 1) CS


