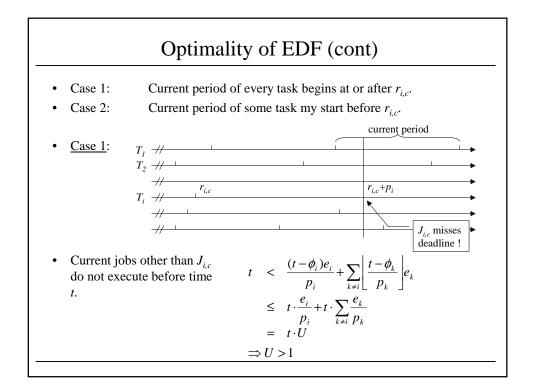
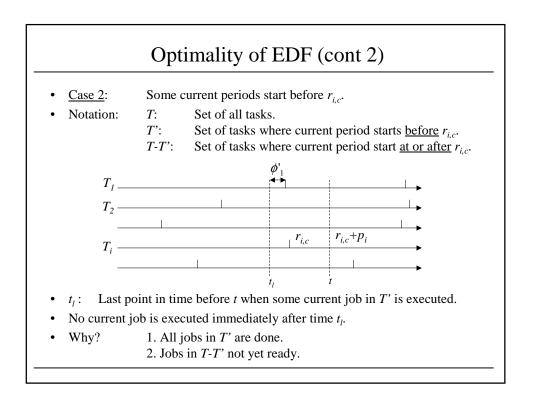
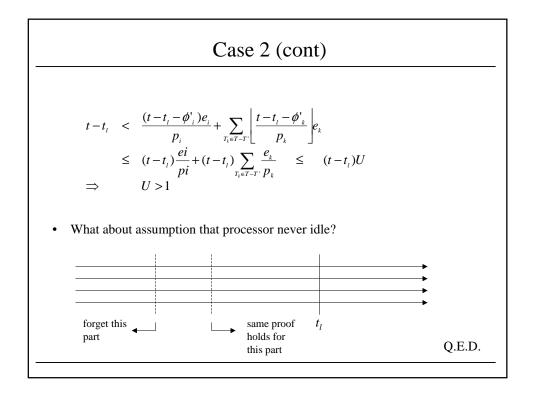
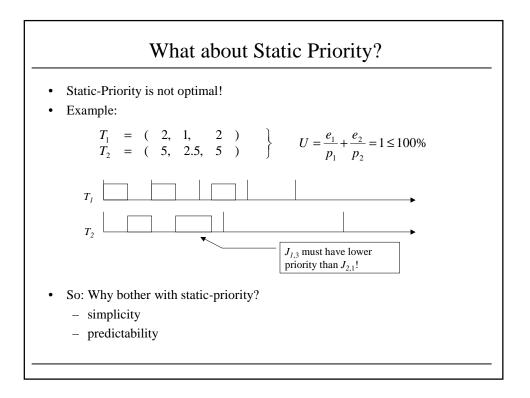


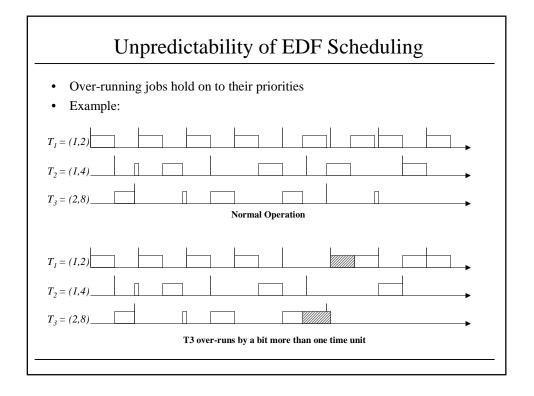
Ļ	deadlines equal to their periods is feasible <i>iff</i> their total utilization is less or equal 1.
Proof:	only-if:obviousif :find algorithm that produces feasible schedule of any system with total utilization not exceeding 1.Try EDF.
We show:	If EDF fails to find feasible schedule, then the total utilization must exceed 1.

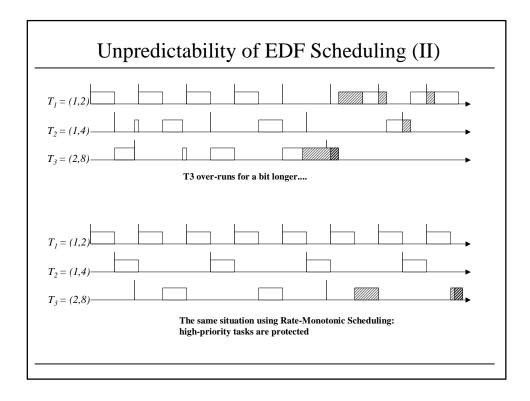




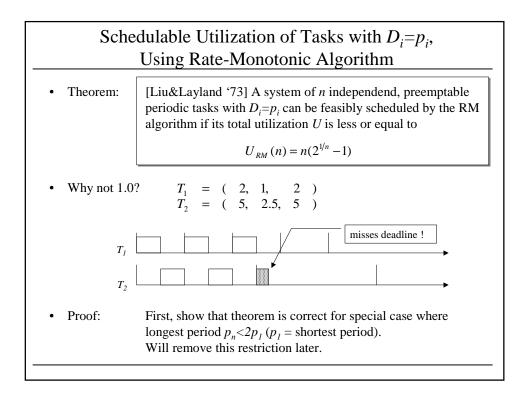




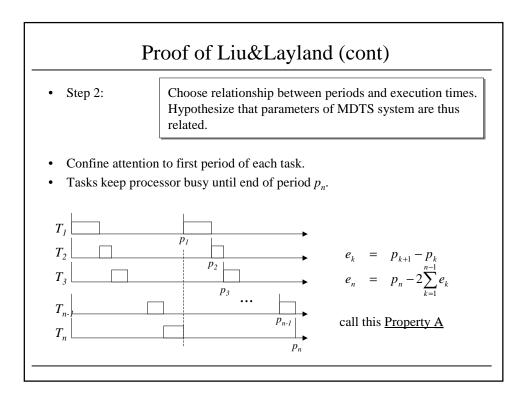




• Simply-Per	iodic Workloads:
Simply-Pe	eriodic: A set of tasks is simply periodic if, for every pair of tasks, one period is multiple of other period.
• Theorem:	A system of simply periodic, independent, preemptable tasks whose relative deadlines are equal to their periods is schedulable according to RM <i>iff</i> their total utilization does not exceed 100%.
• Proof:	Assume T_i misses deadline at time t . t is integer multiple of p_i . t is also integer multiple of $p_k, \forall p_k < p_i$. Utilization due to i highest-priority task
=> total tim	he to complete jobs with deadline <i>t</i> :
If job misse	es deadline, then $\sum_{k=1}^{i} \frac{t \cdot e_k}{p_k} = t \cdot U_i = t \cdot \sum_{k=1}^{i} \frac{e_k}{p_k}$



	Proof of Liu&Layland
• General idea:	Find the <u>most-difficult-to-schedule</u> system of n tasks among all <u>difficult-to-schedule</u> systems of n tasks.
Difficult-to-se	chedule: Fully utilizes processor for some time interval. Any increase in execution time would make system unschedulable.
• Most-difficul	t-to-schedule: system with lowest utilization among difficult- to-schedule systems.
• Each of the fo	llowing <u>4 steps</u> brings us closer to this system.
• <u>Step 1:</u>	Identify phases of tasks in most-difficult-to-schedule system.
	System must be in-phase. (talk about this later)



	Proof Liu&Layland (cont)
• Step 3:	Show that any set of D-T-S tasks that are not related according to Property A has higher utilization.
• What happens	if we deviate from Property A?
• Deviate one w	ay: <u>Increase</u> execution of some high-priority task by ε :
	$e'_1 = e_1 + \mathcal{E} = p_2 - p_1 + \mathcal{E}$
	Must reduce execution time of some other task:
	$e'_{k} = e_{k} - \mathcal{E}$ $U' - U = \frac{e_{1}'}{p_{1}} + \frac{e'_{k}}{p_{k}} - \frac{e_{1}}{p_{1}} - \frac{e_{k}}{p_{k}} = \frac{\mathcal{E}}{\underbrace{p_{1}}_{>0} - \frac{\mathcal{E}}{p_{k}}}$

Proof Liu&Layland (cont)

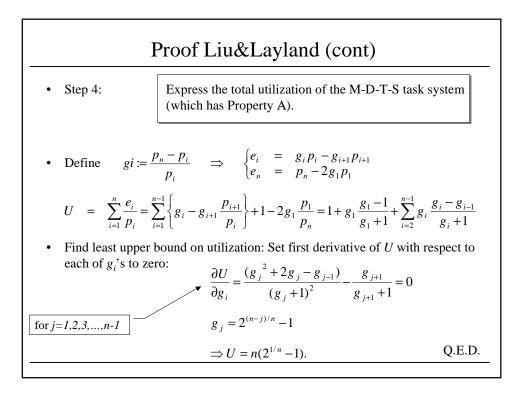
• Deviate other way:

<u>Reduce</u> execution time of some high-priority tasks by ε :

$$e''_1 = e_1 - \mathcal{E} = p_2 - p_1 - \mathcal{E}$$

Must increase execution time of some lower-priority task:

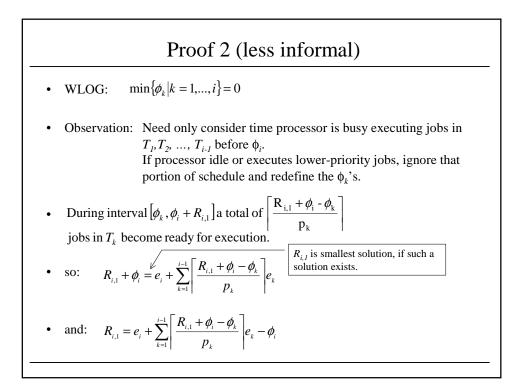
$$e''_{k} = e_{k} + 2\varepsilon$$
$$U''-U = \underbrace{\frac{2\varepsilon}{p_{k}} - \frac{\varepsilon}{p_{1}}}_{>0}$$



	Period Ratios > 2
•	 We show: 1. Every D-T-S task system <i>T</i> with period ratio > 2 can be transformed into D-T-S task system <i>T</i>' with period ratio <= 2. 2. The total utilization of the task set decreases during the transformation step.
•	We can therefore confine search to systems with period ratio < 2 .
•	1. Transformation T-T' : while $\exists T_k \text{ with } l \cdot p_k < p_n \leq (l+1)p_k (l \geq 2)$ $T_k(p_k, e_k) \rightarrow (l \cdot p_k, e_k)$ $T_n(p_n, e_n) \rightarrow (p_n, e_n + (l-1)e_k)$ end
•	Compare utilizations:
	$U - U' = \frac{e_k}{p_k} + \frac{e_n}{p_n} - \frac{e_k}{l \cdot p_k} - \frac{e_n + (l-1)e_k}{p_n} = \frac{e_k}{p_k} - \frac{e_k}{l \cdot p_k} - \frac{(l-1)e_k}{p_n}$ $= \left(\frac{1}{l \cdot p_k} - \frac{1}{p_n}\right)(l-1)e_k > 0$
	$(l \cdot p_k - p_n)^{r} $

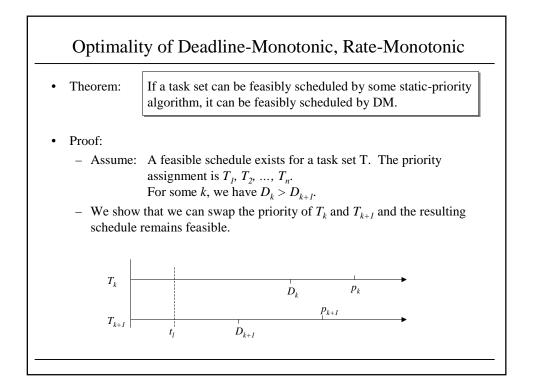
Definition:	[Critical Instant] [Liu&Layland] If the maximum response time of all jobs in T_i is less than D_i , then the job of T_i released in the critical instant has the maximum response time. [Baker] If the response time of some jobs in T_i exceeds D_i , then the response time of the job release during the critical instant exceeds D_i .
Theorem:	In a fixed-priority system where every job completes before the next job in the same task is released, a critical instant of a task T_i occurs when one of its jobs $J_{i,c}$ is released at the same time with a job of every higher-priority task.

	Proof (informal)	
•	Assume: WLOG:	Theorem holds for $k < i$. $\forall k < i : \phi_k = 0$, and we look at $J_{i,l}$:
•	Observation:	The completion time of higher-priority jobs is independent of the release time of $J_{i,l}$.
•	Therefore:	The sooner $J_{i,l}$ is released, the longer it has to wait until it is completed.
		Q.E.D.

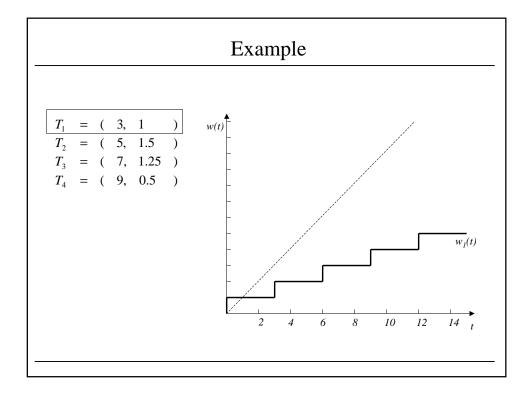


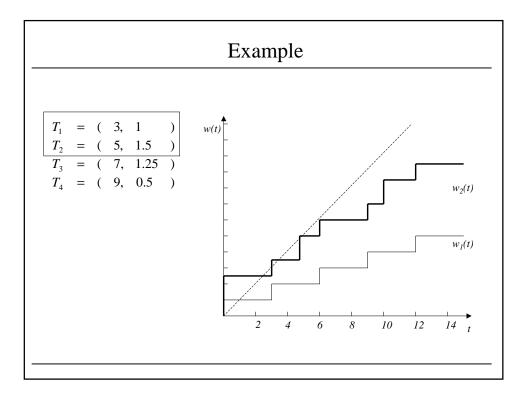
Why Utilization-Based Tests?

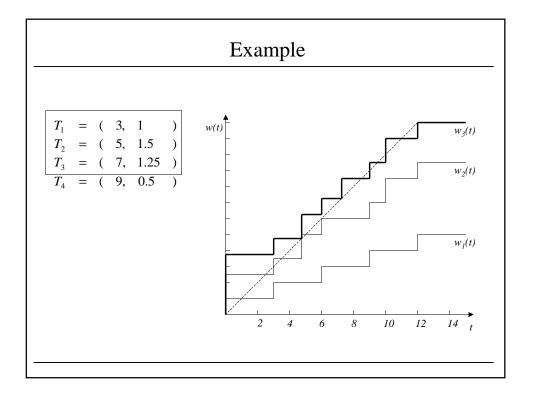
- If no parameter ever varies, we could use simulation.
- But:
 - Execution times may be smaller than e_i
 - Interrelease times may vary.
- Tests are still <u>robust</u>.
- Useful as methodology to define execution times or periods.

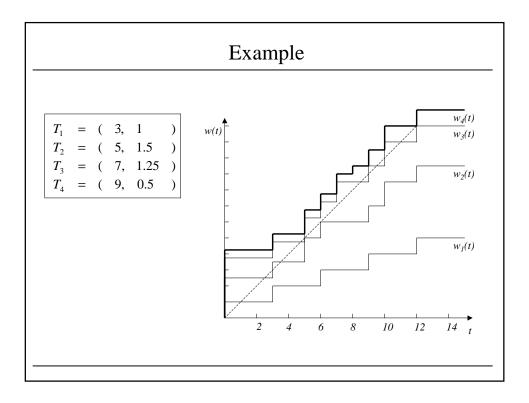


Time-Demand Analysis• Compute total demand on processor time of job released at a critical instant
and by higher-priority tasks as function of time from the critical instant.• Check whether demand can be met before deadline.• Determine whether T_i is schedulable:
 - Focus on a job in T_i , suppose release time is critical instant of T_i :
 $w_i(t)$: Processor-time demand of this job and all higher-priority jobs
 released in (t_0, t) :
 $w_i(t) = e_i + \sum_{k=1}^{i-1} \left\lceil \frac{t}{p_k} \right\rceil e_k$ • This job in T_i meets its deadline if, for some
 $t_1 \le D_i \le p_i$: $w_i(t_1) \le t_1$ • If this does not hold, job cannot meet its deadline, and system of tasks is not
 schedulabe by given static-priority algorithm.









Practical Factors

- Non-Preemptable Portions (*)
- Self-Suspension of Jobs (*)
- Context Switches (*)
- Insufficient Priority Resolutions (Limited Number of Distinct Priorities)
- Time-Driven Implementation of Scheduler (Tick Scheduling)
- Varying Priorities in Fixed-Priority Systems

Practical Factors I: Non-Preemptability		
• Jobs, or porti	ons thereof, may be non-preemptable.	
• Definition:	[non-preemptable portion]	
	ρ_i : largest non-preemptable portion of jobs in T_i .	
• Definition:	[blocked job] A job is said to be blocked if it is prevented from executing by lower-priority job. (priority-inversion)	
– higher-pr and	s schedulability of a task T_i , we must consider fority tasks mptable portions of lower-priority tasks	

