

- Let *b*(.) be a monotonicaly increasing function.
- *b(.)* is a <u>deterministic traffic constraint function</u> of a connection if during <u>any</u> interval of length *I*, the number of bits arriving during the interval is no greater than *b(I)*.
- Let *A*[*t*1,*t*2] be the number of packets arriving during interval [*t*1,*t*2]. Then, *b*(.) is a traffic constraint function if

$$A[s, s+I] \le b(I), \forall s, I > 0$$

- Each model defines inherently a traffic constraint function.
- The accuracy of models can be compared by comparing their constraint functions.

Switch Scheduling	
• <u>Work-conserving</u> (greedy) <i>vs.</i> <u>non-work-conserving</u> (non-greedy) mechanisms.	
• <u>Rate-allocating</u> disciplines:	Allow packets to be served at higher rates than the guaranteed rate.
• <u>Rate-controlled</u> disciplines:	Ensures each connection the guaraneed rate, but does not allow packets to be served above guaranteed rate.
 <u>Priority-based</u> scheduling: fair queueing virtual clock earliest due date (EDD) rate-controlled static prior (RCSP) 	 <u>Wheighted Round-Robin</u> scheduling: WRR writy

Is it Necessary to Regulate?

- [Liebeherr, Wrege, Ferrari, Transactions on Networking, 1995]
- Generalization of schedulability for arbitrary traffic constraint functions $A^*(I)$:

Theorem: A set *N* of connections that is given by $\{A *_p, d_j\}$ is schedulable according to a static-priority algorithm if and only if for all priorities *p*, and for all $I \ge 0$ there is a *t* with $t \le d_p - s_p^{min}$ such that:

$$\forall I, \exists t \le d_p - s_p^{\min} : I + t \ge \sum_{j \in C_p} A_j * (I) - s_p^{\min} + \sum_{q=1}^{p-1} \sum_{j \in C_q} A_j * ((I+t)^-) + \max_{r>p} \{s_r^{\max}\}$$

Delay EDD

- Upon arrival of Packet j of Connection i:
 - Determine effective arrival time: $a_{i,j}^e = max(a_{i,j-1}^e + p_i, a_{i,j})$
 - Stamp packet with local deadline: $d_{ij} = a^{e}_{ij} + D_{i,k}$
 - Process packets in EDF order.
- Delay EDD is greedy.
- Can be mapped into special case of Sporadic Server.
- Acceptance test (Δ = total density): $\Delta + l/p_i < l l/p_{min}$
- Offered local deadline: $LD_i = \min(p_i, 1/(1-\Delta 1/p_{min}))$

Problem with EDD: jitter

- max end-to-end delay over k switches: $\sum_{k} D_{i,k}$
- min end-to-end delay over *k* switches:

exceeds I.

- Actual length of rounds in greedy WRR varies with amount of traffic at switch.
- Non-greedy WRR schemes fix round length into fixed-length frames.
- Stop-and-Go [Golestani]
- Hierarchical Round Robin [Kalmanek, K., K.]

